scholarly journals p38 MAP kinase–dependent phosphorylation of the Gp78 E3 ubiquitin ligase controls ER–mitochondria association and mitochondria motility

2015 ◽  
Vol 26 (21) ◽  
pp. 3828-3840 ◽  
Author(s):  
Lei Li ◽  
Guang Gao ◽  
Jay Shankar ◽  
Bharat Joshi ◽  
Leonard J. Foster ◽  
...  

Gp78 is an ERAD-associated E3 ubiquitin ligase that induces degradation of the mitofusin mitochondrial fusion proteins and mitochondrial fission. Gp78 is localized throughout the ER; however, the anti-Gp78 3F3A monoclonal antibody (mAb) recognizes Gp78 selectively in mitochondria-associated ER domains. Epitope mapping localized the epitope of 3F3A and a commercial anti-Gp78 mAb to an 8–amino acid motif (533–541) in mouse Gp78 isoform 2 that forms part of a highly conserved 41–amino acid region containing 14-3-3– and WW-binding domains and a p38 MAP kinase (p38 MAPK) consensus site on Ser-538 (S538). 3F3A binds selectively to nonphosphorylated S538 Gp78. Using 3F3A as a reporter, we induced Gp78 S538 phosphorylation by serum starvation and showed it to be mediated by p38 MAPK. Mass spectroscopy analysis of Gp78 phosphopeptides confirmed S538 as a major p38 MAPK phosphorylation site on Gp78. Gp78 S538 phosphorylation limited its ability to induce mitochondrial fission and degrade MFN1 and MFN2 but did not affect in vitro Gp78 ubiquitin E3 ligase activity. Phosphomimetic Gp78 S538D mutation prevented Gp78 promotion of ER–mitochondria interaction, and SB203580 inhibition of p38 MAPK increased ER–mitochondria association. p38 MAPK phosphorylation of Gp78 S538 therefore regulates Gp78-dependent ER–mitochondria association and mitochondria motility.

2017 ◽  
Vol 474 (18) ◽  
pp. 3075-3086 ◽  
Author(s):  
Nikhil Panicker ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Monogenetic, familial forms of Parkinson's disease (PD) only account for 5–10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.


2019 ◽  
Vol 218 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Victoria Riccio ◽  
Nicholas Demers ◽  
Rong Hua ◽  
Miluska Vissa ◽  
Derrick T. Cheng ◽  
...  

The regulation of organelle abundance is critical for cell function and survival; however, the mechanisms responsible are not fully understood. In this study, we characterize a role of the deubiquitinating enzyme USP30 in peroxisome maintenance. Peroxisomes are highly dynamic, changing in abundance in response to metabolic stress. In our recent study identifying the role of USP30 in mitophagy, we observed USP30 to be localized to punctate structures resembling peroxisomes. We report here that USP30, best known as a mitophagy regulator, is also necessary for regulating pexophagy, the selective autophagic degradation of peroxisomes. We find that overexpressing USP30 prevents pexophagy during amino acid starvation, and its depletion results in pexophagy induction under basal conditions. We demonstrate that USP30 prevents pexophagy by counteracting the action of the peroxisomal E3 ubiquitin ligase PEX2. Finally, we show that USP30 can rescue the peroxisome loss observed in some disease-causing peroxisome mutations, pointing to a potential therapeutic target.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 470-470
Author(s):  
Mani Mohindru ◽  
Perry Pahanish ◽  
Efstratios Katsoulidis ◽  
Robert Collins ◽  
Thomas Rogers ◽  
...  

Abstract Cytokines such as TNF α, IFN γ and others have been implicated in the pathogenesis of ineffective hematopoiesis in MDS and are thought to lead to the high rate of apoptosis in hematopoietic progenitors. The p38 Mitogen Activated Protein Kinase (MAPK) is an evolutionary conserved enzyme that is involved in many cellular processes including stress signaling. We have previously shown that the p38 MAP kinase is strongly activated by IFNs, TNF α, TGF β and other inhibitory cytokines in normal primary hematopoietic progenitors and plays an important role in the negative regulation of normal hematopoiesis. In the present study, we determined the role of the p38 MAPK in the pathogenesis of MDS evaluated its inhibition as a potential therapeutic strategy in this disease. p38 MAPK inhibition was achieved by the use of a novel p38 inhibitor - SD-282, a specific inhibitor of p38α MAP kinase. SD-282 performs very similarly in animal and cell models to a p38 inhibitor now in the clinic. We also transfected primary hematopoietic cells with flurescent labeled siRNAs against p38 and successfully downregulated the levels of the protein. Using these approaches, we demonstrate that pharmacological inhibition of the p38 MAPK can reverse the growth inhibitory effects of TNF α and IFN γ on erythroid and myeloid colony formation. This reversal of TNF α mediated inhibition correlates with significant reduction of apoptosis seen in human hematopoeitic progenitors pretreated with p38 inhibitor SD-282. Having established the importance of p38 MAPK in cytokine mediated inhibition of normal hematopoiesis, we performed colony forming assays with bone marrow CD34+ cells from 8 patients with MDS in the presence of either pharmacologic or siRNA based inhibitors of p38. All patients had refractory cytopenias with multilineage dysplasia. Our data indicates that SD-282 treatment strongly enhances both erythroid and myeloid colony formation in MDS CD34+ bone marrow cells in vitro. This increase was not observed when these progenitors were grown in the presence of negative controls - SB 202474 and the MEK inhibitor PD 98059. Similarly, an increase in hematopoietic colony formation, though of a lesser magnitude was seen when MDS bone marrow progenitors were transfected with siRNAs against p38 MAPK. To further determine the role of cytokines in the pathogenesis of MDS, we also used bone marrow derived sera from the same MDS patients. Our studies show exposure to patient derived sera led to the phosphorylation/activation of p38 MAPK in normal hematopoietic progenitors when compared to sera from healthy volunteers. Our studies also demonstrate that bone marrow derived sera from MDS patients can inhibit erythroid and myeloid colony formation of normal hematopoietic progenitors. This inhibition can be reversed by blocking p38 MAPK using SD-282, other p38 inhibitors and siRNAs. This finding confirms the role of marrow cytokine /serum factors in the ineffective hematopoiesis seen in MDS and suggests the importance of p38 MAPK activation in this phenomenon. Thus our studies show the p38 MAPK may be a common effector of inhibitory cytokine signaling in normal and MDS hematopoietic cells. These results provide a strong rationale for using p38 inhibition as a novel treatment strategy for MDS. Supported by Harris Methodist Foundation Grant, VISN-17 New Investigator Grant and VA Research Corp Grant to AV.


2008 ◽  
Vol 79 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Yasuhiro Yamamoto ◽  
Yuki Hoshino ◽  
Takashi Ito ◽  
Tetsuro Nariai ◽  
Tomomi Mohri ◽  
...  

1998 ◽  
Vol 7 (11) ◽  
pp. 2249-2255 ◽  
Author(s):  
Ted Fox ◽  
Joyce T. Coll ◽  
Xiaoling Xie ◽  
Pamella J. Ford ◽  
Ursula A. Germann ◽  
...  

2017 ◽  
Vol 28 (3) ◽  
pp. 396-410 ◽  
Author(s):  
Edward Cherok ◽  
Shan Xu ◽  
Sunan Li ◽  
Shweta Das ◽  
W. Alex Meltzer ◽  
...  

MARCH5, an OMM-associated E3 ubiquitin ligase, controls mitochondrial function. Despite its importance, the mechanism and factors controlling MARCH5 activity are largely unknown. Here we report that the MARCH5 C-terminal domain plays a critical role in degradation of MARCH5 substrates, likely by facilitating release of ubiquitinated proteins from the OMM. We also found that the mitochondrial fission proteins Drp1 and Mff negatively regulate MARCH5’s activity toward MiD49 and Mcl1. Knockouts of either Drp1 or Mff led to reduced expression, shorter half-lives, and increased ubiquitination of MiD49 and Mcl1. Effects of Mff and Drp1 depletion on degradation rates and ubiquitination of Mcl1 and MiD49 were eliminated in Drp1−/−/MARCH5−/− and Mff−/−/MARCH5−/− cells. Our data show that it is not mitochondrial morphology per se but rather Mff and Drp1 that directly control MARCH5. Consistently, we find that Mff is an integral component of the MARCH5/p97/Npl4 complex, which is also controlled by MARCH5’s C-terminal domain. Furthermore, not only mitochondrial fission but also fusion is regulated through Mff and Drp1 protein activities. Thus, in addition to their canonical roles in mitochondrial fission, Mff and Drp1 also act as regulatory factors that control mitochondrial fission and fusion.


Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4313-4319 ◽  
Author(s):  
Sandip Bhattacharyya ◽  
Diane E. Brown ◽  
Judson A. Brewer ◽  
Sherri K. Vogt ◽  
Louis J. Muglia

Abstract To explore the role of glucocorticoids in regulation of kinase pathways during innate immune responses, we generated mice with conditional deletion of glucocorticoid receptor (GR) in macrophages (MGRKO). Activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) caused greater mortality and cytokine production in MGRKO mice than in controls. Ex vivo, treatment with dexamethasone (Dex) markedly inhibited LPS-mediated induction of inflammatory genes in control but not GR-deficient macrophages. We show that Dex inhibits p38 MAPK, but not PI3K/Akt, ERK, or JNK, in control macrophages. Associated with p38 inhibition, Dex induced MAP kinase phosphatase-1 (MKP-1) in control, but not MGRKO, macrophages. Consistent with the ex vivo studies, treatment with a p38 MAPK–specific inhibitor resulted in rescue of MGRKO mice from LPS-induced lethality. Taken together, we identify p38 MAPK and its downstream targets as essential for GR-mediated immunosuppression in macrophages.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gerta Hoxhaj ◽  
Edward Caddye ◽  
Ayaz Najafov ◽  
Vanessa P Houde ◽  
Catherine Johnson ◽  
...  

The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1.


2011 ◽  
Vol 300 (3) ◽  
pp. E500-E507 ◽  
Author(s):  
Tao Hong ◽  
Jie Ning ◽  
Xuefeng Yang ◽  
Hui-Yu Liu ◽  
Jianmin Han ◽  
...  

It has previously been known that transcription of the PGC-1α gene can be either inhibited or stimulated by p38 MAP kinase (p38 MAPK). To determine whether p38 MAPK plays an inhibitory or stimulatory role in PGC-1α gene transcription, we further investigated the role of p38 MAPK in this study. Our results showed that the basal level of p38 MAPK phosphorylation was increased in gastrocnemius of mice under HFD and that p38 MAPK stimulated PGC-1α gene transcription in C2C12 myotubes. Our results also provided new mechanisms in myotubes that the p38 MAPK-induced PGC-1α gene transcription was mediated by CREB. In exploring the role of the Akt-dependent insulin signaling on PGC-1α gene transcription, we found that the basal Akt-dependent signaling was increased in gastrocnemius of mice under HFD. The p38 MAPK-induced PGC-1α gene transcription was prevented by insulin. Insulin suppression of PGC-1α gene transcription was neutralized by overexpression of the constitutively nuclear form of FoxO1. Finally, we located three insulin response elements (IREs) in the PGC-1α promoter, and mutations of these IREs abolish or blunt activity of the PGC-1α promoter. Together, our results show that transcription of the PGC-1α gene is balanced by different intracellular signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document