Abstract 533: Critical role of MMP-9 dimers in cell migration: design of inhibitory peptides

Author(s):  
Antoine Dufour ◽  
Nicole S. Sampson ◽  
Cem Kuscu ◽  
Stanley Zucker ◽  
Jian Cao
2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


1998 ◽  
Vol 111 (15) ◽  
pp. 2189-2195 ◽  
Author(s):  
X. Huang ◽  
J. Wu ◽  
S. Spong ◽  
D. Sheppard

The integrin alphavbeta6 is expressed on a variety of epithelial cells during dynamic processes including organogenesis, tissue injury and malignant transformation. However, because of the lack of tools to specifically inhibit the function of this integrin, little is known about its effects on cell behavior. To directly examine the role of this integrin in cell migration, we used keratinocytes derived from wild-type mice or mice expressing a null mutation in the beta6 subunit (beta6-/-) to perform migration assays in vitro. Migration on the known alphavbeta6 ligand, fibronectin was reduced in keratinocytes from beta6-/- mice. Interestingly, keratinocytes from beta6-/- mice also demonstrated markedly reduced migration on vitronectin, a protein not previously known to be a ligand for alphavbeta6. An anti-alphavbeta6 monoclonal antibody 10D5, generated by immunization of beta6-/- mice with murine keratinocytes, inhibited adhesion and migration of wild-type keratinocyte on both vitronectin and fibronectin to levels similar to those seen with keratinocytes from beta6-/- mice. alphavbeta6-mediated migration on both ligands was dramatically augmented by treatment with phorbol myrisate acetate (PMA) or with hepatocyte growth factor, and augmentation of migration by either stimulus could be abolished by the PKC inhibitor GF109203X, suggesting a critical role for PKC in enhancement of alphavbeta6-mediated cell migration.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Yi Fan

Neovascularization, the formation of new blood vessels, is fundamental to cardiac repair and regeneration in ischemic heart disease. After myocardial infarction (MI), vascular stem cells (VSC) are mobilized from bone marrow and recruited to the ischemic site, de novo generating new blood vessels to promote cardiac recovery. Our previous studies have revealed that phosphorylation of profilin-1 (Pfn-1) induces endothelial cell migration and sprouting angiogenesis. Here, we show that Pfn-1 phosphorylation regulates VSC homing to ischemic site and cardiac repair after MI through protease expression. Vascular lineage-specific knock-in of phosphorylation-dead Pfn-1(Y129F) mutant in mice show that Pfn-1 phosphorylation is critical for ischemia-induced neovascularization and cardiac function recovery after MI. Deficiency in Pfn-1 phosphorylation inhibits VSC homing to the ischemic hindlimb, suggesting a critical role of Pfn-1 phosphorylation in VSC recruitment. Mechanistic studies show that Pfn-1 phosphorylation is required for vascular endothelial growth factor (VEGF)-A-induced expression of metalloproteinase (MMP) −2 and −9 and cell migration in VSC. Therefore, these studies identify a critical role of Pfn-1 phosphorylation in VSC homing and neovascularization after MI, and suggest that Pfn-1 phosphorylation may represent as a therapeutic target for treating ischemic heart disease.


2000 ◽  
Vol 148 (5) ◽  
pp. 957-970 ◽  
Author(s):  
Valérie Petit ◽  
Brigitte Boyer ◽  
Delphine Lentz ◽  
Christopher E. Turner ◽  
Jean Paul Thiery ◽  
...  

Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin–Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin–Crk complex in the collagen-induced cell motility.


2021 ◽  
Author(s):  
NR Patel ◽  
A Blanks ◽  
Y Li ◽  
MC Prieto ◽  
SM Meadows

AbstractThe (Pro)renin receptor ((P)RR), also known as ATP6AP2, is a single-transmembrane protein that is implicated in a multitude of biological processes. However, the exact role of ATP6AP2 during blood vessel development remains largely undefined. Here, we use an inducible endothelial cell (EC)-specific Atp6ap2 knockout mouse model to investigate the role of ATP6AP2 during both physiological and pathological angiogenesis in vivo. We observed that postnatal deletion of Atp6ap2 in ECs results in cell migration defects, loss of tip cell polarity and subsequent impairment of retinal angiogenesis. In vitro, Atp6ap2 deficient ECs similarly displayed reduced cell migration, impaired sprouting, and defective cell polarity. Transcriptional profiling of ECs isolated from Atp6ap2 mutant mice further indicated regulatory roles in angiogenesis, cell migration and extracellular matrix composition. Mechanistically, we showed that expression of various extracellular matrix components is controlled by ATP6AP2 via the extracellular-signal-regulated kinase (ERK) pathway. Furthermore, Atp6ap2 deficient retinas exhibited reduced revascularization in an oxygen induced retinopathy model. Collectively, our results demonstrated a critical role of ATP6AP2 as a regulator of developmental and pathological angiogenesis.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311 ◽  
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Abstract Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


2015 ◽  
Vol 26 (20) ◽  
pp. 3658-3670 ◽  
Author(s):  
Bo Shen ◽  
Brian Estevez ◽  
Zheng Xu ◽  
Barry Kreutz ◽  
Andrei Karginov ◽  
...  

Heterotrimeric G protein Gα13 is known to transmit G protein–coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding 767EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13–β1 interaction and inhibited β1 integrin–dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin–dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peng Zhang ◽  
Jian Xu ◽  
Hua Zhang ◽  
Xiao-Yu Liu

Abstract Background Emerging evidence has indicated the critical role of TRPV4 in diverse human cancers. However, the underlying molecular mechanism of TRPV4 in colon cancer invasiveness is still unknown. Methods Immunohistochemistry staining was used to analyze the expression of TRPV4 and ZEB1 in clinical tissues; Wound healing and transwell assays were applied to determine the cell invasiveness; Western blot was used to explore the relation between TRPV4 and ZEB1. Results Colon cancer cells were transfected with siRNA against TRPV4 or HC067047 (a selective TRPV4 antagonist), TRPV4 full-length plasmid or siRNA against ZEB1, or both, in order to measure cell migration and invasion. And we found that TRPV4 silencing or inhibition exhibited an inhibitory role in colon cancer cell migration and invasion, coupled with compromised EMT process, and suppressed AKT activity. TRPV4 stimulated expression of ZEB1 and consequently contributed to EMT process and invasiveness. It was also revealed that overexpression of TRPV4 and ZEB1 in clinical patients with local metastasis, and positive correlation between TRPV4 and ZEB1. Conclusions Our results uncovered the role of TRPV4 in tumor metastasis and highlighted the potential mechanism of TRPV4-ZEB1 axis in indicating EMT.


Sign in / Sign up

Export Citation Format

Share Document