scholarly journals Receptor-mediated cell mechanosensing

2017 ◽  
Vol 28 (23) ◽  
pp. 3134-3155 ◽  
Author(s):  
Yunfeng Chen ◽  
Lining Ju ◽  
Muaz Rushdi ◽  
Chenghao Ge ◽  
Cheng Zhu

Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process.

2019 ◽  
Author(s):  
Eleanor M Denham ◽  
Michael I Barton ◽  
Susannah M Black ◽  
Marcus J Bridge ◽  
Ben de Wet ◽  
...  

AbstractDose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell-cell interface. Here we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. We validate the system for a range of immunoreceptors, including the T cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. This system allows the effect of surface density, valency, dimensions, and affinity of the ligand to be manipulated. It can be readily extended to other receptor-cell surface ligand interactions, and will facilitate investigation into the activation of, and signal integration between, cell surface receptors.


1994 ◽  
Vol 72 (06) ◽  
pp. 964-972 ◽  
Author(s):  
Jeffery L Kutok ◽  
Barry S Coller

SummaryWe produced a murine monoclonal antibody, 7H2, and localized its epitope to one or more small regions on platelet glycoprotein (GP) Ilia. 7H2-IgG and 7H2-F(ab’)2 completely inhibit platelet aggregation and fibrinogen binding at low agonist concentrations, but only partially inhibit aggregation and fibrinogen binding at high agonist concentrations; 7H2-Fab has no effect on aggregation or fibrinogen binding at any agonist concentration. 7H2-IgG binds to the entire platelet population as judged by flow cytometry. At near saturating concentrations, ∼40,000 7H2-IgG antibody molecules bind per platelet. In contrast, ∼80,000 7H2 Fab molecules bind per platelet, suggesting that 7H2-IgG binding is bivalent. 7H2 was unable to inhibit fibrinogen binding to purified, immobilized GPIIb/IIIa. These data indicate that the bivalent binding of 7H2 to GPIIIa is required for its partial inhibition of fibrinogen binding to platelets, perhaps through dimerization of GPIIb/IIIa surface receptors (or more complex GPIIb/IIIa redistribution triggered by 7H2 binding) resulting in limited accessibility of fibrinogen to its binding site(s).


2014 ◽  
Vol 211 (10) ◽  
pp. 1947-1955 ◽  
Author(s):  
Edwina Naik ◽  
Joshua D. Webster ◽  
Jason DeVoss ◽  
Jinfeng Liu ◽  
Rowena Suriben ◽  
...  

The T cell hyperproliferation and autoimmune phenotypes that manifest in mice lacking E3 ubiquitin ligases such as Cbl, ITCH, or GRAIL highlight the importance of ubiquitination for the maintenance of peripheral T cell tolerance. Less is known, however, about the deubiquitinating enzymes that regulate T cell proliferation and effector function. Here, we define a cell intrinsic role for the deubiquitinase Usp9X during proximal TCR signaling. Usp9X-deficient T cells were hypoproliferative, yet mice with T cell–specific Usp9x deletion had elevated numbers of antigen-experienced T cells and expanded PD-1 and OX40-expressing populations consistent with immune hyperactivity. Aged Usp9x KO mice developed lupus-like autoimmunity and lymphoproliferative disease, indicating that ubiquitin ligases and deubiquitinases maintain the delicate balance between effective immunity and self-tolerance.


1981 ◽  
Vol 153 (6) ◽  
pp. 1615-1628 ◽  
Author(s):  
D T Fearon ◽  
I Kaneko ◽  
G G Thomson

C3b receptors on human polymorphonuclear leukocytes (PMN) were nonrandomly distributed in small clusters on the plasma membranes of these cells when assessed by indirect immunofluorescence at 0 degree C using monospecific rabbit Fab' or F(ab')2 anti-C3b receptor and tetramethylrhodamine isothiocyanate (TRITC)-conjugated goat IgG anti-F(ab')2. When PMN were incubated with the bivalent anti-C3b receptor at 37 rather than at 0 degree C, almost no immunofluorescence was observed, which indicates that the C3b receptor-F(ab')2 complexes had been rendered inaccessible to TRITC-IgG anti-F(ab')2. Endocytosis of the anti-C3b receptor ligand was quantitated by measuring the binding 131I-IgG anti-F(ab')2 by PMN that had previously taken up 125I-F(ab')2 anti-C3b receptor at 0 and at 37 degree C, respectively. There was a constant 2: 1 molar ratio of anti-F(ab')2 to anti-C3b receptor with PMN that had been incubated with the first antibody at 0 degree C. In contrast, when increments of F(ab')2 anti-C3b receptor were taken up by the cells at 37 degree C, there was a dose-related decline in this molar ratio to a minimum of 0.2 molecules of anti-F(ab')2 anti-F(ab')2 bound per molecule of PMN-associated anti-C3b receptor. 125I-F(ab')2 anti-C3b receptor taken up by PMN at 37 degree C was also inaccessible to release by proteolytic treatment of the cells with pronase. The rate of endocytosis of 125I-F(ab')2 anti-C3b receptor was rapid as the PMN-bound antibody fragment became inaccessible to 131I-IgG anti-F(ab')2 within 10 min during incubation of the cells at 37 degree C. In contrast to these findings, 125I-Fab' anti-C3b receptor that was taken up by PMN at 37 degree C remained accessible to both 131I-IgG anti-F(ab')2 and to proteolytic release by pronase, which suggests that monovalent interaction of ligand with C3b receptors was not sufficient for induction of endocytosis. The requirement for multivalency was also demonstrated using the C3b-OR, the normal ligand for the C3b receptor. 125I-C3b-OR was specifically bound by PMN but remained on the cell receptor. 125I-C3b-OR was specifically bound by PMN but remained on the cell surface, as determined by its accessibility to pronase, unless it was cross-linked with F(ab')2 anti-C3. Although C3b receptors on PMN do not mediate internalization of adsorptive pinocytosis of soluble ligand indicates their potential for the clearance of C3b-bearing immune complexes without recruitment of other cell surface receptors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Johannes Pettmann ◽  
Anna Huhn ◽  
Enas Abu Shah ◽  
Mikhail A Kutuzov ◽  
Daniel B Wilson ◽  
...  

T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self pMHC antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities, and use it to measure the discriminatory power of the TCR, and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ~1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.


2010 ◽  
Vol 38 (5) ◽  
pp. 1349-1355 ◽  
Author(s):  
Thomas A. Bowden ◽  
Max Crispin ◽  
E. Yvonne Jones ◽  
David I. Stuart

Members within the paramyxovirus subfamily Paramyxovirinae constitute a large number of highly virulent human and animal pathogens. The glycoproteins present on these viruses are responsible for mediating host cell attachment and fusion and are key targets for the design of antiviral entry inhibitors. In the present review, we discuss recent structural studies which have led to a better understanding of the various mechanisms by which different paramyxoviruses use their attachment glycoproteins to hijack specific protein and glycan cell-surface receptors to facilitate viral entry. It is observed that the paramyxovirus attachment glycoprotein consists of a conserved overall structure which includes an N-terminal six-bladed β-propeller domain which is responsible for cell receptor binding. Crystal structures of this domain from different biomedically important paramyxoviruses, including measles, Nipah, Hendra, Newcastle disease and parainfluenza viruses, alone and in complex with their functional cell-surface receptors, demonstrate three contrasting mechanisms of receptor engagement that paramyxoviruses have evolved to confer discreet protein- and glycan-receptor specificity. This structural information highlights the adaptability of the paramyxovirus attachment glycoprotein surface and the potential for the emergence of new and potentially harmful viruses in human hosts.


2004 ◽  
Vol 72 (4) ◽  
pp. 2186-2193 ◽  
Author(s):  
Martha L. Hale ◽  
Jean-Christophe Marvaud ◽  
Michel R. Popoff ◽  
Bradley G. Stiles

ABSTRACT Clostridium perfringens iota-toxin consists of two separate proteins identified as a cell binding protein, iota b (Ib), which forms high-molecular-weight complexes on cells generating Na+/K+-permeable pores through which iota a (Ia), an ADP-ribosyltransferase, presumably enters the cytosol. Identity of the cell receptor and membrane domains involved in Ib binding, oligomer formation, and internalization is currently unknown. In this study, Vero (toxin-sensitive) and MRC-5 (toxin-resistant) cells were incubated with Ib, after which detergent-resistant membrane microdomains (DRMs) were extracted with cold Triton X-100. Western blotting revealed that Ib oligomers localized in DRMs extracted from Vero, but not MRC-5, cells while monomeric Ib was detected in the detergent-soluble fractions of both cell types. The Ib protoxin, previously shown to bind Vero cells but not form oligomers or induce cytotoxicity, was detected only in the soluble fractions. Vero cells pretreated with phosphatidylinositol-specific phospholipase C before addition of Ib indicated that glycosylphosphatidyl inositol-anchored proteins were minimally involved in Ib binding or oligomer formation. While pretreatment of Vero cells with filipin (which sequesters cholesterol) had no effect, methyl-β-cyclodextrin (which extracts cholesterol) reduced Ib binding and oligomer formation and delayed iota-toxin cytotoxicity. These studies showed that iota-toxin exploits DRMs for oligomer formation to intoxicate cells.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 497 ◽  
Author(s):  
Esther S. Brielle ◽  
Dina Schneidman-Duhovny ◽  
Michal Linial

The COVID-19 disease has plagued over 200 countries with over three million cases and has resulted in over 200,000 deaths within 3 months. To gain insight into the high infection rate of the SARS-CoV-2 virus, we compare the interaction between the human ACE2 receptor and the SARS-CoV-2 spike protein with that of other pathogenic coronaviruses using molecular dynamics simulations. SARS-CoV, SARS-CoV-2, and HCoV-NL63 recognize ACE2 as the natural receptor but present a distinct binding interface to ACE2 and a different network of residue–residue contacts. SARS-CoV and SARS-CoV-2 have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2–ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV–ACE2 complex. These findings expose an exceptional evolutionary exploration exerted by coronaviruses toward host recognition. We postulate that the versatility of cell receptor binding strategies has immediate implications for therapeutic strategies.


Author(s):  
Toshihiko Shiraishi ◽  
Kota Nagai

Abstract It has been reported that cells sense and respond to mechanical stimuli. Mechanical vibration promotes the cell proliferation and the cell differentiation of osteoblast cells at 12.5 Hz and 50 Hz, respectively. It indicates that osteoblast cells have a mechansensing system for mechanical vibration. There may be some mechanosensors and we focus on cellular focal adhesions through which mechanical and biochemical signals may be transmitted from extracellular matrices into a cell. However, it is very difficult to directly apply mechanical stimuli to focal adhesions. We developed a magnetic micropillar substrate on which micron-sized pillars are deflected according to applied magnetic field strength and focal adhesions adhering to the top surface of the pillars are given mechanical stimuli. In this paper, we focus on intracellular calcium ion as a second messenger of cellular mechanosensing and investigate the mechanosensing mechanism of an osteoblast cell at focal adhesions under cyclic strain using a magnetic micropillar substrate. The experimental results indicate that the magnetic micropillars have enough performance to response to an electric current applied to a coil in an electromagnet and to apply the cyclic strain of less than 3% to a cell. In the cyclic strain of less than 3%, the calcium response of a cell was not observed.


1992 ◽  
Vol 262 (5) ◽  
pp. F843-F848 ◽  
Author(s):  
B. M. Anner ◽  
M. Moosmayer

The investigation of active Na-K transport inhibition by mercury is difficult to perform in a cell because of the presence of numerous other membrane and intracellular proteins modifiable by mercury. Thus purified Na-K-adenosinetriphosphatase (ATPase) molecules performing active transport in an artificial membrane are required to demonstrate unequivocally the inhibition of active transport by mercury. We made use of a single population of Na-K-ATPase liposomes filled with ATP and Na to show mercury inhibition of active 86Rb transport mediated by both the inside-out and right-side-out pumps in the same liposome. The effect of HgCl2 on the Na-K-ATPase in cell-like and reversed orientation was measured in comparison with convallatoxin. A dilution series showed that 10 microM externally added HgCl2 inhibited the active 86Rb transport at the cytoplasmic side first; at 50 microM both pump populations were blocked, indicating either membrane permeation by HgCl2 and inhibition at the internal intracellular domains or onset of extracellular action at higher HgCl2 concentration. The results show that the metal-binding interface of Na-K-ATPase molecule is profoundly implicated in active ion transport and that the intracellular part of the Na-K-ATPase molecule presents the primary target for mercury action.


Sign in / Sign up

Export Citation Format

Share Document