scholarly journals ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum

2018 ◽  
Vol 29 (18) ◽  
pp. 2156-2164 ◽  
Author(s):  
Maria Clara Guida ◽  
Tobias Hermle ◽  
Laurie A. Graham ◽  
Virginie Hauser ◽  
Margret Ryan ◽  
...  

ATP6AP2 (also known as the [pro]renin receptor) is a type I transmembrane protein that can be cleaved into two fragments in the Golgi apparatus. While in Drosophila ATP6AP2 functions in the planar cell polarity (PCP) pathway, recent human genetic studies have suggested that ATP6AP2 could participate in the assembly of the V-ATPase in the endoplasmic reticulum (ER). Using a yeast model, we show here that the V-ATPase assembly factor Voa1 can functionally be replaced by Drosophila ATP6AP2. This rescue is even more efficient when coexpressing its binding partner ATP6AP1, indicating that these two proteins together fulfill Voa1 functions in higher organisms. Structure–function analyses in both yeast and Drosophila show that proteolytic cleavage is dispensable, while C-terminus-dependent ER retrieval is required for ATP6AP2 function. Accordingly, we demonstrate that both overexpression and lack of ATP6AP2 causes ER stress in Drosophila wing cells and that the induction of ER stress is sufficient to cause PCP phenotypes. In summary, our results suggest that full-length ATP6AP2 contributes to the assembly of the V-ATPase proton pore and that impairment of this function affects ER homeostasis and PCP signaling.

2004 ◽  
Vol 167 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Yukio Kimata ◽  
Daisuke Oikawa ◽  
Yusuke Shimizu ◽  
Yuki Ishiwata-Kimata ◽  
Kenji Kohno

In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain possesses two subregions that seem indispensable for activity. The BiP-binding site was assigned not to these subregions, but to a region neighboring the transmembrane domain. Phenotypic comparison of several Ire1 mutants carrying deletions in the indispensable subregions suggests these subregions are responsible for multiple events that are prerequisites for activation of the overall Ire1 proteins. Unexpectedly, deletion of the BiP-binding site rendered Ire1 unaltered in ER stress inducibility, but hypersensitive to ethanol and high temperature. We conclude that in the ER stress-sensory system BiP is not the principal determinant of Ire1 activity, but an adjustor for sensitivity to various stresses.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiaoguo Zhang ◽  
Xinxin Ding ◽  
Richard Scott Marshall ◽  
Julio Paez-Valencia ◽  
Patrick Lacey ◽  
...  

Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.


2021 ◽  
Vol 478 (15) ◽  
pp. 2953-2975
Author(s):  
Timothy Langlais ◽  
Diana Pelizzari-Raymundo ◽  
Sayyed Jalil Mahdizadeh ◽  
Nicolas Gouault ◽  
Francois Carreaux ◽  
...  

The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.


2005 ◽  
Vol 391 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Daisuke Oikawa ◽  
Yukio Kimata ◽  
Masato Takeuchi ◽  
Kenji Kohno

The luminal domain of the type I transmembrane protein Ire1 senses endoplasmic reticulum stress by an undefined mechanism to up-regulate the signalling pathway for the unfolded protein response. Previously, we proposed that the luminal domain of yeast Ire1 is divided into five subregions, termed subregions I–V sequentially from the N-terminus. Ire1 lost activity when internal deletions of subregion II or IV were made. In the present paper, we show that partial proteolysis of a recombinant protein consisting of the Ire1 luminal domain suggests that subregions II–IV are tightly folded. We also show that a recombinant protein of subregions II–IV formed homodimers, and that this homodimer formation was impaired by an internal deletion of subregion IV. Furthermore, recombinant fragments of subregion IV exhibited a self-binding ability. Therefore, although its sequence is little conserved evolutionarily, subregion IV plays an essential role to promote Ire1 dimer formation.


2013 ◽  
Vol 3 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Andrea D Belalcazar ◽  
Kristy Doyle ◽  
Justin Hogan ◽  
David Neff ◽  
Simon Collier

Abstract The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
Sean S Davies ◽  
L Jackson Roberts ◽  
John L Blakemore ◽  
...  

Objective: Macrophage apoptosis contributes to atherosclerotic plaque necrosis, inflammation, development and rupture. Scavenger receptor class B type I (SR-BI) is a key regulator of HDL metabolism and cellular cholesterol homeostasis. Here we examined the hypothesis that macrophage SR-BI modulates lipid-associated cellular stress and apoptosis. Methods and Results: In vitro cell apoptosis assays were performed in primary macrophages, and for in vivo evidence, we examined TUNEL staining of atherosclerotic lesions of LDLR -/- mice that were reconstituted with SR-BI -/- or WT bone marrow after 16 weeks on a Western diet. We found that SR-BI deficiency led to ~64.3% more apoptotic cells induced by oxidized LDL or free cholesterol in primary macrophages, and 6-fold more lesional apoptotic cells in SR-BI -/- →LDLR -/- mice compared to WT recipient mice. In macrophages, SR-BI deficiency caused significant accumulations of cellular free cholesterol and elevated markers of endoplasmic reticulum (ER) stress. These were exacerbated by feeding mice a high-cholesterol diet or inactivating the apolipoprotein E gene. Peroxidation of lipoproteins and cell membranes leads to modification of phosphatidylethanolamine by lipid aldehydes including isolevuglandins (IsoLG-PE). Treatment of macrophages with IsoLG-PE induced 52.6% more apoptotic cells in SR-BI -/- macrophages compared to WT. Transgenic expression of SR-BI by transfection of SR-BI -/- macrophages rescued oxidative stress-induced ER stress and cell apoptosis. SR-BI deficiency inhibited the Akt pathway compromising macrophage survival and increasing lesion necrosis. Moreover, Akt Activator was able to rescue SR-BI deficiency associated apoptosis in macrophages. Apolipoprotein E interacts with SR-BI in macrophages, co-operating for cellular lipid homeostasis and cell survival signaling. Conclusion: SR-BI protects against cell apoptosis induced by lipid stress in macrophages and atherosclerotic lesions. The underlying mechanisms are, at least in part, through reducing lipid-associated ER stress and promoting Akt activity in macrophages. Thus, we identify macrophage SR-BI-mediated apoptosis pathways as molecular targets for the prevention of atherosclerotic cardiovascular events.


2020 ◽  
Author(s):  
Constanza Feliziani ◽  
Gonzalo Quasollo ◽  
Deborah Holstein ◽  
Macarena Fernandez ◽  
James C Paton ◽  
...  

AbstractThe accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homeostasis. If homeostasis cannot be restored, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as intracellular messenger, the precise mechanism (s) by which Ca2+ release affects the UPR remains unknown. Use of a genetically encoded Ca2+ indicator (GCamP6) that is tethered to the ER membrane, uncovered novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, as well as in a cell model deficient in all three IP3 Receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons. Together, these data reveal the existence of a previously unrecognized mechanism by which stressor-mediated Ca2+ release regulates ER stress.


1998 ◽  
Vol 9 (9) ◽  
pp. 2681-2697 ◽  
Author(s):  
Kenneth Moss ◽  
Andrew Helm ◽  
Yun Lu ◽  
Alvina Bragin ◽  
William R. Skach

Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily M. Nakada ◽  
Rui Sun ◽  
Utako Fujii ◽  
James G. Martin

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.


2019 ◽  
Vol 316 (4) ◽  
pp. E590-E604 ◽  
Author(s):  
Kefan Zhang ◽  
Miaomiao Wang ◽  
Yingjiang Li ◽  
Chunping Li ◽  
Shaidi Tang ◽  
...  

Parathyroid hormone (PTH) and its related peptide (PTH-related peptide 1–34) are two of the Food and Drug Administration-approved bone-promoting drugs for age-related osteoporosis. Treatment with PTH stimulates bone formation. However, the molecular mechanisms of PTH-mediated osteoblast differentiation and cell proliferation are still not completely understood. In this study, we showed that PTH induced endoplasmic reticulum (ER) stress in osteoblasts through the PKR-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (EIF2α)-activating transcription factor 4 (ATF4)-signaling pathway. After separately blocking PERK-EIF2α-ATF4 signaling with two different inhibitors [AMG’44 and integrated stress response inhibitor (ISRIB)] or specific small interfering RNA for PERK and ATF4, the following targets were all downregulated: expression of osteoblast differentiation markers [runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alp), type I collagen (Col1a1), and osteocalcin (Ocn)], cell proliferation markers (CyclinE, CyclinD, and CDC2), amino acid import (Glyt1), and metabolism-related genes (Asns). Additionally, Alp-positive staining cells, Alp activity, matrix mineralization, Ocn secretion, and cell proliferation indexes were inhibited. Interestingly, we found that salubrinal enhanced PTH-induced osteoblast differentiation and proliferation by maintenance of phosphorylation of EIF2α. Furthermore, we observed that PTH increased the association between heat shock protein 90 (HSP90) and PERK and maintained PERK protein stabilization in the early stages of PTH-induced ER stress. Treatment of MC3T3-E1 cells with geldanamycin, an HSP90 inhibitor, decreased PERK protein expression and inhibited osteoblast differentiation and cell proliferation upon PTH treatment. Taken together, our data demonstrate that PTH regulates osteoblast differentiation and cell proliferation, partly by activating the HSP90-dependent PERK-EIF2α-ATF4 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document