Caste Determination in Honey Bees.1 II. Food Consumption of Individual Honey Bee Larvae, Determined with 32P-Labeled Royal Jelly2

1970 ◽  
Vol 63 (5) ◽  
pp. 1342-1345 ◽  
Author(s):  
Alfred Dietz ◽  
E. N. Lambremont
2019 ◽  
Vol 14 (2) ◽  
pp. 476-491 ◽  
Author(s):  
Brendan A. Daisley ◽  
Andrew P. Pitek ◽  
John A. Chmiel ◽  
Kait F. Al ◽  
Anna M. Chernyshova ◽  
...  

Abstract American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zih-Ting Chang ◽  
Yu-Feng Huang ◽  
Yue-Wen Chen ◽  
Ming-Ren Yen ◽  
Po-Ya Hsu ◽  
...  

AbstractDeformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


2020 ◽  
Vol 256 ◽  
pp. 113443 ◽  
Author(s):  
Tanja Tesovnik ◽  
Minja Zorc ◽  
Marko Ristanić ◽  
Uroš Glavinić ◽  
Jevrosima Stevanović ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Andrea Wade ◽  
Chia-Hua Lin ◽  
Colin Kurkul ◽  
Erzsébet Ravasz Regan ◽  
Reed M. Johnson

Beekeepers providing pollination services for California almond orchards have reported observing dead or malformed brood during and immediately after almond bloom—effects that they attribute to pesticide exposure. The objective of this study was to test commonly used insecticides and fungicides during almond bloom on honey bee larval development in a laboratory bioassay. In vitro rearing of worker honey bee larvae was performed to test the effect of three insecticides (chlorantraniliprole, diflubenzuron, and methoxyfenozide) and three fungicides (propiconazole, iprodione, and a mixture of boscalid-pyraclostrobin), applied alone or in insecticide-fungicide combinations, on larval development. Young worker larvae were fed diets contaminated with active ingredients at concentration ratios simulating a tank-mix at the maximum label rate. Overall, larvae receiving insecticide and insecticide-fungicide combinations were less likely to survive to adulthood when compared to the control or fungicide-only treatments. The insecticide chlorantraniliprole increased larval mortality when combined with the fungicides propiconazole or iprodione, but not alone; the chlorantraniliprole-propiconazole combination was also found to be highly toxic to adult workers treated topically. Diflubenzuron generally increased larval mortality, but no synergistic effect was observed when combined with fungicides. Neither methoxyfenozide nor any methoxyfenozide-fungicide combination increased mortality. Exposure to insecticides applied during almond bloom has the potential to harm honey bees and this effect may, in certain instances, be more damaging when insecticides are applied in combination with fungicides.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 603
Author(s):  
Juyeong Kim ◽  
Kyongmi Chon ◽  
Bo-Seon Kim ◽  
Jin-A Oh ◽  
Chang-Young Yoon ◽  
...  

Rearing honey bee larvae in vitro is an ideal method to study honey bee larval diseases or the toxicity of pesticides on honey bee larvae under standardized conditions. However, recent studies reported that a horizontal position may cause the deformation of emerged bees. Accordingly, the purpose of this study was to evaluate the emergence and deformation rates of honey bee (Apis mellifera ligustica) larvae reared in horizontal and vertical positions. The study was conducted under the same laboratory conditions with three experimental groups, non-capped or capped horizontal plates and capped vertical plates. However, our results demonstrated that the exhibited adult deformation rates of the horizontal plates were significantly higher (27.8% and 26.1%) than those of the vertical plates (11.9%). In particular, the most common symptoms were deformed wings and an abnormal abdomen in the horizontal plates. Additionally, adults reared on horizontal plates were substantially smaller (10.88 and 10.82 mm) than those on vertical plates (11.55 mm). Considering these conclusions, we suggest that a vertical rearing method is more suitable when considering the deformation rates of the control groups to verify the sublethal effects of pesticides on honey bees.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yulong Guo ◽  
Zhengyi Zhang ◽  
Mingsheng Zhuang ◽  
Liuhao Wang ◽  
Kai Li ◽  
...  

The honey bee is one of the most important pollinators in the agricultural system and is responsible for pollinating a third of all food we eat. Sacbrood virus (SBV) is a member of the virus family Iflaviridae and affects honey bee larvae and causes particularly devastating disease in the Asian honey bees, Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV identified in China and has resulted in mass death of honey bees in China in recent years. However, the molecular mechanism underlying SBV infection in the Asian honey bee has remained unelucidated. In this present study, we employed high throughput next-generation sequencing technology to study the host transcriptional responses to CSBV infection in A. cerana larvae, and were able to identify genome-wide differentially expressed genes associated with the viral infection. Our study identified 2,534 differentially expressed genes (DEGs) involved in host innate immunity including Toll and immune deficiency (IMD) pathways, RNA interference (RNAi) pathway, endocytosis, etc. Notably, the expression of genes encoding antimicrobial peptides (abaecin, apidaecin, hymenoptaecin, and defensin) and core components of RNAi such as Dicer-like and Ago2 were found to be significantly upregulated in CSBV infected larvae. Most importantly, the expression of Sirtuin target genes, a family of signaling proteins involved in metabolic regulation, apoptosis, and intracellular signaling was found to be changed, providing the first evidence of the involvement of Sirtuin signaling pathway in insects’ immune response to a virus infection. The results obtained from this study provide novel insights into the molecular mechanism and immune responses involved in CSBV infection, which in turn will contribute to the development of diagnostics and treatment for the diseases in honey bees.


2022 ◽  
Author(s):  
Audrey J Parish ◽  
Danny W Rice ◽  
Vicki M Tanquary ◽  
Jason M Tennessen ◽  
Irene LG Newton

Honey bees, the worlds most significant agricultural pollinator, have suffered dramatic losses in the last few decades. These losses are largely due to the synergistic effects of multiple stressors, the most pervasive of which is limited nutrition. The effects of poor nutrition are most damaging in the developing larvae of honey bees, who mature into workers unable to meet the needs of their colony. It is therefore essential that we better understand the nutritional landscape experienced by honey bee larvae. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by increasing the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that two distinct cationic amino acid transporters were gained by B. apis ancestors, and the transporter LysE is conserved across all sequenced strains of B. apis. This result suggests that amino acid export is a key feature conserved within the Bombella clade. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest an important role of B. apis as a nutritional mutualist of honey bee larvae.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Catherine M. Mueller ◽  
Cameron Jack ◽  
Ashley N. Mortensen ◽  
Jamie D. Ellis

European foulbrood is a bacterial disease that affects Western honey bee larvae. It is a concern to beekeepers everywhere, though it is less serious than American foulbrood because it does not form spores, which means that it can be treated. This 7-page fact sheet written by Catherine M. Mueller, Cameron J. Jack, Ashley N. Mortensen, and Jamie Ellis and published by the UF/IFAS Entomology and Nematology Department describes the disease and explains how to identify it to help beekeepers manage their colonies effectively and prevent the spread of both American and European foulbrood.https://edis.ifas.ufl.edu/in1272


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (14) ◽  
pp. 6481
Author(s):  
Marianna Martinello ◽  
Chiara Manzinello ◽  
Nicoletta Dainese ◽  
Ilenia Giuliato ◽  
Albino Gallina ◽  
...  

Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.


Sign in / Sign up

Export Citation Format

Share Document