scholarly journals Microbial enterotypes in personalized nutrition and obesity management

2018 ◽  
Vol 108 (4) ◽  
pp. 645-651 ◽  
Author(s):  
Lars Christensen ◽  
Henrik M Roager ◽  
Arne Astrup ◽  
Mads F Hjorth

Abstract Human gut microbiota has been suggested to play an important role in nutrition and obesity. However, formulating meaningful and clinically relevant dietary advice based on knowledge about gut microbiota remains a key challenge. A number of recent studies have found evidence that stratification of individuals according to 2 microbial enterotypes (dominance of either Prevotella or Bacteroides) may be useful in predicting responses to diets and drugs. Here, we review enterotypes in a nutritional context and discuss how enterotype stratification may be used in personalized nutrition in obesity management. Enterotypes are characterized by distinct digestive functions with preference for specific dietary substrate, resulting in short-chain fatty acids that may influence energy balance in the host. Consequently, the enterotype potentially affects the individual's ability to lose weight when following a specific diet. In short, a high-fiber diet seems to optimize weight loss among Prevotella-enterotype subjects but not among Bacteroides-enterotype subjects. In contrast, increasing bifidobacteria in the gut among Bacteroides-enterotype subjects improves metabolic parameters, suggesting that this approach can be used as an alternative weight loss strategy. Thus, enterotypes, as a pretreatment gut microbiota biomarker, have the potential to become an important tool in personalized nutrition and obesity management, although further interventions assessing their applicability are warranted.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoon Ok Jang ◽  
Ock-Hwa Kim ◽  
Su Jung Kim ◽  
Se Hee Lee ◽  
Sunmi Yun ◽  
...  

AbstractDietary fiber functions as a prebiotic to determine the gut microbe composition. The gut microbiota influences the metabolic functions and immune responses in human health. The gut microbiota and metabolites produced by various dietary components not only modulate immunity but also impact various organs. Although recent findings have suggested that microbial dysbiosis is associated with several respiratory diseases, including asthma, cystic fibrosis, and allergy, the role of microbiota and metabolites produced by dietary nutrients with respect to pulmonary disease remains unclear. Therefore, we explored whether the gut microbiota and metabolites produced by dietary fiber components could influence a cigarette smoking (CS)-exposed emphysema model. In this study, it was demonstrated that a high-fiber diet including non-fermentable cellulose and fermentable pectin attenuated the pathological changes associated with emphysema progression and the inflammatory response in CS-exposed emphysema mice. Moreover, we observed that different types of dietary fiber could modulate the diversity of gut microbiota and differentially impacted anabolism including the generation of short-chain fatty acids, bile acids, and sphingolipids. Overall, the results of this study indicate that high-fiber diets play a beneficial role in the gut microbiota-metabolite modulation and substantially affect CS-exposed emphysema mice. Furthermore, this study suggests the therapeutic potential of gut microbiota and metabolites from a high-fiber diet in emphysema via local and systemic inflammation inhibition, which may be useful in the development of a new COPD treatment plan.


2021 ◽  
Vol 9 (12) ◽  
pp. 2493
Author(s):  
Baoyu Xiang ◽  
Liping Zhao ◽  
Menghui Zhang

Gut-microbiota-targeted nutrition intervention has achieved success in the management of obesity, but its underlying mechanism still needs extended exploration. An obese Prader–Willi syndrome boy lost 25.8 kg after receiving a high-fiber dietary intervention for 105 days. The fecal microbiome sequencing data taken from the boy on intervention days 0, 15, 30, 45, 60, 75, and 105, along with clinical indexes, were used to construct a metagenome-scale metabolic network. Firstly, the abundances of the microbial strains were obtained by mapping the sequencing reads onto the assembly of gut organisms through use of reconstruction and analysis (AGORA) genomes. The nutritional components of the diet were obtained through the Virtual Metabolic Human database. Then, a community model was simulated using the Microbiome Modeling Toolbox. Finally, the significant Spearman correlations among the metabolites and the clinical indexes were screened and the strains that were producing these metabolites were identified. The high-fiber diet reduced the overall amount of metabolite secretions, but the secretions of folic acid derivatives by Bifidobacterium longum strains were increased and were significantly relevant to the observed weight loss. Reduced metabolites might also have directly contributed to the weight loss or indirectly contribute by enhancing leptin and decreasing adiponectin. Metagenome-scale metabolic network technology provides a cost-efficient solution for screening the functional microbial strains and metabolic pathways that are responding to nutrition therapy.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Akihito Nakajima ◽  
Takashi Sasaki ◽  
Kikuji Itoh ◽  
Takashi Kitahara ◽  
Yoshinori Takema ◽  
...  

ABSTRACT Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Previous studies have shown that Bacteroidetes, the major phylum of gut microbiota together with Firmicutes, impact IgA production. However, the relative abundances of species of Bacteroidetes responsible for IgA production were not well understood. In the present study, we identified some specific Bacteroidetes species that were associated with gut IgA induction by hsp60-based profiling of species distribution among Bacteroidetes. The levels of IgA and the expression of the gene encoding activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were increased in soluble high-fiber diet (sHFD)-fed mice. We found that Bacteroides acidifaciens was the most abundant Bacteroidetes species in both sHFD- and normal diet-fed mice. In addition, the gut IgA levels were associated with the relative abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens. Conversely, the ratio of B. acidifaciens to other Bacteroidetes species was reduced in insoluble high-fiber diet fed- and no-fiber diet-fed mice. To investigate whether B. acidifaciens increases IgA production, we generated B. acidifaciens monoassociated mice and found increased gut IgA production and AID expression. Collectively, soluble dietary fiber increases the ratio of gut Bacteroides fragilis group, such as B. acidifaciens, and IgA production. This might improve gut immune function, thereby protecting against bowel pathogens and reducing the incidence of inflammatory bowel diseases. IMPORTANCE Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Gut microbiota impact IgA production, but the specific species responsible for IgA production remain largely elusive. Previous studies have shown that IgA and Bacteroidetes, the major phyla of gut microbiota, were increased in soluble high-fiber diet-fed mice. We show here that the levels of IgA in the gut and the expression of activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were correlated with the abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens. B. acidifaciens monoassociated mice increased gut IgA production and AID expression. Soluble dietary fiber may improve gut immune function, thereby protecting against bowel pathogens and reducing inflammatory bowel diseases.


2002 ◽  
Vol 75 (6) ◽  
pp. 1023-1030 ◽  
Author(s):  
Thomas MS Wolever ◽  
Katrin B Schrade ◽  
Janet A Vogt ◽  
Elizabeth B Tsihlias ◽  
Michael I McBurney

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1562-1562
Author(s):  
Amy Herman ◽  
Matthew Taylor ◽  
Holly Hull

Abstract Objectives To assess the effect of a high fiber diet on changes in gut microbiota and gestational weight gain. Methods Women were block randomized to a 12-week high-fiber (HF; ≥30g/day) intervention (n = 12) or usual care (n = 8). The HF group met weekly for phone counseling with a Registered Dietitian to learn ways in increase fiber intake and given HF snacks (10-12g/day) for the first six weeks. Three 24-hour dietary recalls were performed (baseline, 6 weeks, and 12 weeks). Body weight and stool were collected at baseline and 12 weeks. Gestational weight gain was calculated by subtracting the end study body weight from baseline. Microbial composition was determined by sequencing the 16S rRNA gene targeting the V3-V4 region using MiSeq. Taxa assignment was based on 97% similarity to the Greengenes database and rarefaction were performed with QIIME2. Three measures of alpha diversity were evaluated. T-tests evaluated differences in microbial changes between groups. Pearson's correlations related relative abundance of bacteria to gestational weight gain. Results During the study, the HF group had greater fiber intake (26.1 vs 16.7g; P = 0.02), and gained less weight (5.2 vs 6.6kg; P = 0.11). For alpha diversity, the change in number of observed species and whole tree phylogenetic diversity were different between groups (P = 0.002 and P = 0.004, respectively). No between group differences for change in Shannon Index was found. Taxa from the family Veillonellaceae and genus Dialister were different between groups (P < 0.05). Differences for families Tannerellaceae and Acidaminococcaceae and genera Parabacteroides and Phascolarctobacterium approached significance (P = 0.08-0.09). In the fiber group only, correlations between gestational weight gain and change in Bacteroides (r = -0.586, P = 0.06) and Parabacteroides (r = -0.580, P = 0.10) approached significance. Conclusions After a high-fiber intervention, pregnant women increased fiber intake and gut microbiota alpha diversity, leading to less gestational weight gain. Changes in several taxa at the family and genus level were different between the groups. A larger study is needed to further explore these relationships. Funding Sources This study was supported by a NIH Clinical and Translational Science Award.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 318-319
Author(s):  
Thunyaporn Phungviwatnikul ◽  
Sara E Belchik ◽  
Kelly S Swanson

Abstract Canine obesity can be managed by dietary energy restriction using a specifically formulated weight loss diet. The objective of this study was to determine the effects of weight loss on body composition, voluntary physical activity, and blood metabolites of overweight dogs while being fed a high-protein, high-fiber diet. All procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. Twelve overweight adult spayed female dogs (BW: 15.3±2.1 kg, BCS: 8.1±0.6) were fed a high-protein (CP: 42.0% DMB), high-fiber (TDF: 22.0% DMB) diet during a 5-wk baseline phase (wk 0) to identify food intake needed to maintain BW. A 24-wk weight loss phase followed. After wk 0, food was initially provided at 80% the amount needed to maintain BW and then adjusted weekly with a goal of 1.5–2% weight loss per wk. Data were analyzed statistically overtime using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW (P < 0.0001), with 1.4±0.7% weight loss per wk. BCS decreased by 2.8 units (P < 0.0001). During weight loss, dogs consumed an average of 457.5±61.4 kcal/d, with energy intake being reduced by a total of 43.8% by wk 24 compared to baseline. Lean muscle mass, fat mass, and fat percentage were reduced (P < 0.0001) by 1.3 kg, 3.1 kg, and 11.7% respectively. Serum triglycerides, alkaline phosphatase, white blood cell counts, and neutrophils were decreased (P < 0.0001), but serum bilirubin, creatinine, and blood urea nitrogen were increased (P < 0.01) over time. Average daily physical activity changed over time, but was not greatly different due to weight loss. Our results suggest that a high-protein, high-fiber diet promotes fat mass loss, minimizes lean muscle mass loss, and reduces inflammatory marker and triglyceride concentrations in overweight dogs. Therefore, it is a suitable nutritional solution for weight loss programs in dogs.


Author(s):  
Rifkind Malik ◽  
Ahmad Hamim Sadewa ◽  
Sunarti Sunarti

Hyperlipidemia induces inflammation by increasing proinflammatory cytokines and reducing anti-inflammatory cytokines. Short chain fatty acids from fiber fermented by intestinal bacteria can reduce inflammation. The aim of this study is to evaluate the benefits of high fiber diet on IL-10 gene expression and IL-10 levels in white adipose tissue in rats with high fat and fructose diet. Twenty-five male Wistar rats, were divided into 5 groups: 1) normal (N); 2) Hyperlipidemia (HL); 3) Hyperlipidemia with fiber 1.04 g/rat/day (HL1); 4) Hyperlipidemia with fiber 2.07 g/rat/day (HL2), and 5) Hyperlipidemia with fiber 3.11 g/rat/day (HL3). The rats were considered hyperlipidemia, if their plasma triglyceride levels were > 70.79 mg/dL. High fat and fructose diet contain high fructose and trans-fat, while intervention diet for T1, T2, and T3 contain a total fiber of 6.88%, 13.77% and 20.65%, respectively. Serum IL-10 analysis using ELISA method was done before and after intervention, and IL-10 gene expression was analyzed using qPCR method after intervention. High trans-fat and fructose diet decrease IL-10 levels, while high-fiber diet can significantly increase the gene expression and levels of IL-10 in hyperlipidemia rats (p<0.05). High-fiber diet can improve inflammation through increase the gene expression and levels of IL-10.


Sign in / Sign up

Export Citation Format

Share Document