scholarly journals Evidence of horizontal gene transfer between land plant plastids has surprising conservation implications

2021 ◽  
Author(s):  
Lars Hedenäs ◽  
Petter Larsson ◽  
Bodil Cronholm ◽  
Irene Bisang

Abstract Background and Aims Horizontal Gene Transfer (HGT) is an important evolutionary mechanism because it transfers genetic material that may code for traits or functions, between species or genomes. It is frequent in mitochondrial and nuclear genomes but has not been demonstrated between plastid genomes of different green land plant species. Methods We Sanger sequenced the nuclear Internal transcribed spacers 1&2 (ITS) and the plastid rpl16 G2 intron (rpl16). In five individuals with foreign rpl16 we also sequenced atpB-rbcL and trnLUAA-trnFGAA. Key Results We discovered 14 individuals of a moss species with typical nuclear ITS but foreign plastid rpl16, from a species of a distant lineage. None of the individuals with three plastid markers sequenced contained all foreign markers, demonstrating the transfer of plastid fragments rather than of the entire plastid genome, i.e., entire plastids were not transferred. The two lineages diverged 165185 Myr BP. The extended time interval since lineage divergence suggests that the foreign rpl16 is more likely explained by HGT than by hybridisation or incomplete lineage sorting. Conclusions We provide the first conclusive evidence of interspecific plastid-to-plastid HGT among land plants. Two aspects are critical: it occurred at several localities during the massive colonization of recently disturbed open habitats that were created by large-scale liming as a freshwater biodiversity conservation measure. It also involved mosses whose unique life cycle includes spores that first develop a filamentous protonema phase. We hypothesize that gene transfer is facilitated when protonema filaments of different species intermix intimately when colonizing disturbed early succession habitats.

2021 ◽  
Author(s):  
Apurva Narechania ◽  
Rob DeSalle ◽  
Barun Mathema ◽  
Barry N Kreiswirth ◽  
Paul J Planet

Most microbes have the capacity to acquire genetic material from their environment. Recombination of foreign DNA yields genomes that are, at least in part, incongruent with the vertical history of their species. Dominant approaches for detecting such horizontal gene transfer (HGT) and recombination are phylogenetic, requiring a painstaking series of analyses including sequence-based clustering, alignment, and phylogenetic tree reconstruction. Given the breakneck pace of genome sequencing, these traditional pan-genomic methods do not scale. Here we propose an alignment-free and tree-free technique based on the sequential information bottleneck (SIB), an optimization procedure designed to extract some portion of relevant information from one random variable conditioned on another. In our case, this joint probability distribution tabulates occurrence counts of k-mers with respect to their genomes of origin (the relevance information) with the expectation that HGT and recombination will create a strong signal that distinguishes certain sets of co-occuring k-mers. The technique is conceptualized as a rate-distortion problem. We measure distortion in the relevance information as k-mers are compressed into clusters based on their co-occurrence in the source genomes. This approach is similar to topic mining in the Natural Language Processing (NLP) literature. The result is model-free, unsupervised compression of k-mers into genomic topics that trace tracts of shared genome sequence whether vertically or horizontally acquired. We examine the performance of SIB on simulated data and on the known large-scale recombination event that formed the Staphylococcus aureus ST239 clade. We use this technique to detect recombined regions and recover the vertically inherited core genome with a fraction of the computing power required of current phylogenetic methods.


2021 ◽  
Author(s):  
Michał Ciach ◽  
Julia Pawłowska ◽  
Anna Muszewska

AbstractNumerous studies have been devoted to individual cases of horizontally acquired genes in fungi. It has been shown that such genes expand their metabolic capabilities and contribute to their adaptations as parasites or symbionts. Some studies have provided a more extensive characterization of the horizontal gene transfer (HGT) in Dikarya. However, in the early diverging fungi (EDF), the overall influence of HGT on the ecological adaptation and evolution is largely unknown. In order to fill this gap, we have designed a computational pipeline to obtain a sample of over 600 phylogenetic trees with evidence for recent to moderately old HGT across multiple EDF genomes ranging from Chytridiomycota and Blastocladiomycota to Mucoromycota. Our pipeline is designed to obtain a small sample of reliable HGT events with a possibly minimal number of false detections that distort the overall statistical patterns. We show that transfer rates differ greatly between closely related species and strains, but the ancestrally aquatic fungi are generally more likely to acquire foreign genetic material than terrestrial ones. A close ecological relationship with another organism is a predisposing condition, but does not always result in an extensive gene exchange, with some fungal lineages showing a preference for HGT from loosely associated soil bacteria.ImportanceAlthough it is now recognized that horizontal gene exchange is a factor influencing the adaptation and evolution of eukaryotic organisms, the so far described cases in early diverging fungi (EDF) are fragmentary, and a large-scale comprehensive study is lacking. We have designed a methodology to obtain a reliable, statistical sample of inter-kingdom xenologs across the tree of life of EDF to give a preliminary characterization of their general properties and patterns. We study how different fungal lineages vary in terms of the number of xenologs, what are their ecological associations, and the molecular properties of proteins encoded by the acquired genes. Our results help to better understand to what extent and in what way the incorporation of foreign genetic material shaped the present biodiversity of fungi.


2021 ◽  
Vol 22 (9) ◽  
pp. 4484
Author(s):  
Ewa Filip ◽  
Lidia Skuza

Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.


2014 ◽  
Vol 83 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Maria Virginia Sanchez-Puerta

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3065-3065
Author(s):  
Munevver Cinar ◽  
Steven Flygare ◽  
Marina Mosunjac ◽  
Ganji Nagaraju ◽  
Dongkyoo Park ◽  
...  

Spatial genetic heterogeneity is a characteristic phenomenon that influences multiple myeloma's (MM) phenotype and drug sensitivity (Rasche L. et al and Bolli N et al.). Hence, the branch model of tumor evolution is not sufficient to explain the disorganized architecture observed in MM. In this study, we investigated whether MM ctDNA horizontal gene transfer (HGT) affect tumor genetic architecture and drug sensitivity, resembling what is seen in prokaryotes, and elucidated the mechanisms involved in the mobilization of genetic material from one cell to another. We identified that plasma from patients with MM transmits drug sensitivity or resistance to cells in culture. This transmission of drug sensitivity is mediated by ctDNA transfer of oncogenes to a host cell. Importantly, in vitro and in vivo demonstrated that ctDNA mainly targets cells resembling the cell of origin (tropism). Karyotype spreads and whole genome sequencing demonstrated that once patients ctDNA encounters host cells, it migrates into the nucleus where it ultimately integrates into the cell's genome. Integration to the genome was confirmed to be targeted to myeloma cells. Further sequencing analysis of multiple MM samples identified ctDNA tropism and integration is dependent on the 5' and 3' end presence of transposable elements (TE), particularly of the MIR and ALUsq family. These results were further validated by TE mediated delivery of GFP into MM cells in vitro and HSVTK in tumors of mouse xenografts. In conclusion, this data indicates for the first time that TE mediates MM ctDNA HGT into homologous tumor cells shaping the hierarchical architecture of tumor clones and affecting tumor response to treatment. Therapeutically, this unique quality of ctDNA can be exploited for targeted gene therapeutic approaches in MM and potentially other cancers. Disclosures Bernal-Mizrachi: Kodikas Therapeutic Solutions, Inc: Equity Ownership; TAKEDA: Research Funding; Winship Cancer Institute: Employment, Patents & Royalties.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara J. Weaver ◽  
Davi R. Ortega ◽  
Matthew H. Sazinsky ◽  
Triana N. Dalia ◽  
Ankur B. Dalia ◽  
...  

Abstract Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ. Here, we use a functional tagged allele of VcPilQ purified from native V. cholerae cells to determine the cryoEM structure of the VcPilQ secretin in amphipol to ~2.7 Å. We use bioinformatics to examine the domain architecture and gene neighborhood of T4aP secretins in Proteobacteria in comparison with VcPilQ. This structure highlights differences in the architecture of the T4aP secretin from the type II and type III secretion system secretins. Based on our cryoEM structure, we design a series of mutants to reversibly regulate VcPilQ gate dynamics. These experiments support the idea of VcPilQ as a potential druggable target and provide insight into the channel that DNA likely traverses to promote the spread of antibiotic resistance via horizontal gene transfer by natural transformation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3865 ◽  
Author(s):  
Clara A. Fuchsman ◽  
Roy Eric Collins ◽  
Gabrielle Rocap ◽  
William J. Brazelton

BackgroundHorizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted).ResultsWe investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids.ConclusionsAnaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria.In general, these transfers are from archaea that live in similar oxygen and temperature conditions as the bacteria that receive the genes. Potential hotspots of horizontal gene transfer between archaea and bacteria include hot springs, marine sediments, and oil wells. Cold spots for horizontal transfer included dilute, aerobic, mesophilic environments such as marine and freshwater surface waters.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 569 ◽  
Author(s):  
Phale ◽  
Shah ◽  
Malhotra

In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes.


BMC Genomics ◽  
2015 ◽  
Vol 16 (Suppl 10) ◽  
pp. S1 ◽  
Author(s):  
Ruth Davidson ◽  
Pranjal Vachaspati ◽  
Siavash Mirarab ◽  
Tandy Warnow

2008 ◽  
Vol 9 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Patrick Boerlin ◽  
Richard J. Reid-Smith

AbstractNew concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR(insertionsequences withcommonregions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.


Sign in / Sign up

Export Citation Format

Share Document