A - 22 Post-Concussive Changes in Menstrual Cycle Reporting: Comparing Self-Report Versus Blood Plasma Concentrations

2021 ◽  
Vol 36 (4) ◽  
pp. 662-662
Author(s):  
Ott S ◽  
Gonzalez L ◽  
Redell J ◽  
Duran J ◽  
Schatz P ◽  
...  

Abstract Objective Few studies have addressed serum levels of hypothalamic hormones, as a consequence of sports-related concussion, in concussed, female adolescent athletes. Methods Female athletes, ages 14–18, were assigned to two study groups: 1) 18 diagnosed with a sports-related concussion (SRC) and evaluated within 7 days of injury, and 2) 18 healthy participants matched on age, education, and sport. Participants self-reported menstrual cycle status, with Days 1–15 of the menstrual cycle corresponding to the Follicular phase and days >15 to the Luteal phase. Blood samples were drawn for Plasma concentration measurement of follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), adrenocorticotropin hormone (ACTH), prolactin, growth hormone (GH) and progesterone. Using progesterone plasma concentration, <=2 ng/mL corresponding to the Follicular phase and > 2 ng/mL corresponding to the Luteal phase. Results Across both groups, there was agreement between self-reported and progesterone plasma concentrations menstrual cycle Follicular (71.4%) or Luteal phase (52.9%) [X2(1) = 2.33, p = 0.13, phi = 0.25] in identifying menstrual cycle phases. Within the non-concussed controls, there was 90% agreement for Follicular phase and only 33.3% agreement for Luteal phase [X2(1) = 1.55, p = 0.30, phi = 0.29], and for the concussed athletes there was 54.5% agreement for Follicular phase and 75% agreement for Luteal phase [X2(1) = 1.66, p = 0.35, phi = 0.30] Conclusions We provide preliminary evidence of disruption of the hypothalamic–pituitary-axis (HPA) following mTBI as there was a 90% agreement between self-reported follicular phase and follicular phase determined by Progesterone levels for non-concussed females as compared to 54% agreement between the same measures for concussed females.

2015 ◽  
Vol 31 (3) ◽  
pp. 1044 ◽  
Author(s):  
Patricia Sariñana-González ◽  
Sara Vitoria-Estruch ◽  
Ángel Romero-Martínez ◽  
Luis Moya-Albiol

Few studies have examined therelationship between the cortisol awakening response (CAR) and aggression inhealthy youth adults. This study analyzes this relationship in 83 women (38 inluteal phase and 45 in follicular phase of menstrual cycle) and 20 men.Salivary-free cortisol measures of the CAR were obtained immediately followingawakening and 30, 45, and 60 minutes afterwards. Additionally, participantscompleted a self-report of aggression. Men presented lower levels of CAR thanwomen in luteal phase. Men were also liable to present more physical aggressionthan women, independently of their menstrual phase. General aggression andspecifically verbal aggression are predictors of CAR in men. In women, verbalaggression predicts CAR during the follicular phase of the menstrual cycle;whereas anger and physical aggression do so during the luteal phase. CAR may beused as a valid marker of proneness to aggression – but must be considered differentlydepending on gender and menstrual cycle of women. This study offers relevantinformation on the hormonal bases of aggression and so contributes to theliterature on alleviating problems related to violence.


2018 ◽  
Author(s):  
Rebecca Pierson ◽  
Kelly Pagidas

A normal menstrual cycle is the end result of a sequence of purposeful and coordinated events that occur from intact hypothalamic-pituitary-ovarian and uterine axes. The menstrual cycle is under hormonal control in the reproductively active female and is functionally divided into two phases: the proliferative or follicular phase and the secretory or luteal phase. This tight hormonal control is orchestrated by a series of negative and positive endocrine feedback loops that alter the frequency of the pulsatile secretion of gonadotropin-releasing hormone (GnRH), the pituitary response to GnRH, and the relative secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary gonadotrope with subsequent direct effects on the ovary to produce a series of sex steroids and peptides that aid in the generation of a single mature oocyte and the preparation of a receptive endometrium for implantation to ensue. Any derailment along this programmed pathway can lead to an abnormal menstrual cycle with subsequent impact on the ability to conceive and maintain a pregnancy. This review contains 7 figures and 26 references Key words: follicle-stimulating hormone, follicular phase, gonadotropin-releasing hormone, luteal phase, luteinizing hormone, menstrual cycle, ovulation, progesterone, proliferative phase, secretory phase


2018 ◽  
Author(s):  
Rebecca Pierson ◽  
Kelly Pagidas

A normal menstrual cycle is the end result of a sequence of purposeful and coordinated events that occur from intact hypothalamic-pituitary-ovarian and uterine axes. The menstrual cycle is under hormonal control in the reproductively active female and is functionally divided into two phases: the proliferative or follicular phase and the secretory or luteal phase. This tight hormonal control is orchestrated by a series of negative and positive endocrine feedback loops that alter the frequency of the pulsatile secretion of gonadotropin-releasing hormone (GnRH), the pituitary response to GnRH, and the relative secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary gonadotrope with subsequent direct effects on the ovary to produce a series of sex steroids and peptides that aid in the generation of a single mature oocyte and the preparation of a receptive endometrium for implantation to ensue. Any derailment along this programmed pathway can lead to an abnormal menstrual cycle with subsequent impact on the ability to conceive and maintain a pregnancy. This review contains 7 figures and 26 references Key words: follicle-stimulating hormone, follicular phase, gonadotropin-releasing hormone, luteal phase, luteinizing hormone, menstrual cycle, ovulation, progesterone, proliferative phase, secretory phase


2009 ◽  
Vol 297 (2) ◽  
pp. H765-H774 ◽  
Author(s):  
Xiaopeng Bai ◽  
Jingxiu Li ◽  
Lingqi Zhou ◽  
Xueqi Li

This study was designed to assess the changes in nonlinear properties of heart rate (HR) variability (HRV) during the menstrual cycle by means of complexity measures, including sample entropy (SampEn) and correlation dimension (CD), and explore probable physiological interpretations for them. In 16 healthy women (mean age: 23.8 ± 2.7 yr), complexity measures along with the spectral components of HRV (sympathovagal markers) were analyzed over 1,500 R-R intervals recorded during both the follicular phase ( day 11.9 ± 1.4) and the luteal phase ( day 22.0 ± 1.4) of each woman's menstrual cycle. Simultaneously, serum ovarian hormone (estradiol-17 and progesterone) and thyroid-related hormone [free triiodothyronine, free thyroxine (T4), and thyroid-stimulating hormone] concentrations were measured. With regard to HRV measures, SampEn, CD, and high-frequency (HF) components decreased from the follicular phase to the luteal phase, whereas normalized low-frequency (LF) components and the LF-to-HF ratio as well as resting HR increased. In regard to hormone levels, whereas progesterone was increased, the other hormone concentrations were unchanged. Furthermore, across the menstrual cycle, both SampEn and CD were well correlated with the spectral indexes and free T4 concentrations, and SampEn also showed significant correlations with the ratio of estradiol-17 to progesterone concentrations. These results suggest that the nonlinear properties in HRV are altered during the regular menstrual cycle and that the autonomic nervous system, ovarian hormone balance, and free T4 may be involved in nonlinear HR control in healthy women. All of these factors may enrich the physiological meanings of complexity measures.


Author(s):  
Shehnaz Shaikh

Introduction: Menstrual cycle or menstruation involved discharge of sanguinous fluid and a sloughing of uterine wall. In women menstruation occurs at regular intervals on an average of 28 days, although most women gave a history of regular intervals of 28 to 30 days. About 10% -15% of women showed cycle at the precise 28 ± 2 days intervals when menstrual calendar was utilized. Normally in young women in different phases of ovarian cycles the plasma levels of estrogen vary. Ovulation occurs in the first 12-13th day of menstrual cycle, which is termed estrogen surge and second occurs in mid-luteal phase. During mid cycle or follicular phase of menstrual cycle the plasma concentration of progesterone is very low about 0.9 ng/mL. its level starts rising owing to secretion from the granulose cells. During luteal phase progesterone level reaches its peak value of 18 ng/mL and its level fall to a minimum value toward the end of the cycle. Estrogen affects local and systemic vasodilation. The menstrual cycle envelops two fundamental stages, the follicular stage (FP) and the luteal stage (LP). The follicular stage can part advance into two substages; the early FP, which is characterised with moo concentrations of both the key hormones estrogen and progesterone; and the mid FP where estrogen is tall autonomously from progesterone. The LP is epitomized by tall concentration of both estrogen and progesterone. These two fundamental stages are isolated by a soak surge in luteinizing hormone activating ovulation. These recurrent changes are said to be frequency unsurprising while long time. Aim: The main aim of this study is to evaluate the Cardiorespiratory functions changes during different Phases of Menstrual Cycle.   Material and methods: In this study, 20 with normal weight, 20 with obese and 20 with overage were included and taken them as a sample size. In this study all the young women those were recruited as a sample size are unmarried, undergraduate female student with the between the age group of 18-22years, having regular 28+6 days menstrual cycle for at least last 6months prior to this study. For the collection of data all the participants were instructed to attend the physiology lab department during each of three different phases. Day-2 during menstrual phase, Day-7, during follicular phase and Day-22 during luteal phase and the following parameters were recorded as Anthropometric measurements, measuring of pulse rate and blood pressure and cardiac efficiency test. Result: In general, work out proficiency changed essentially amid the distinctive stages of the menstrual cycle with the most elevated amid luteal stage and least amid menstrualo stage. There was no critical contrast in impact test amid menstrual stage, follicular stage and luteal stage of menstrual cycle among three bunches of people. Conclusion: We have watched noteworthy increment in cardiac and respiratory proficiency within the luteal stage of the menstrual cycle in ordinary weight people. Lower wellness levels were watched in overweight and stout females. In this manner hone of customary work out and admissions of solid slim down which offer assistance in lessening the weight and in turn the BMI will offer assistance in improving the physical wellness of the people. Keywords: Cardiorespiratory, Menstrual cycle, expiratory blast test


Author(s):  
Hannah N. Willett ◽  
Kristen J. Koltun ◽  
Anthony C. Hackney

This study examined the effect of estradiol-β-17 across the menstrual cycle (MC) during aerobic exercise on energy substrate utilization and oxidation. Thirty-two eumenorrheic (age = 22.4 ± 3.8 y (mean ± SD)), physically active women participated in two steady-state running sessions at 65% of VO2max, one during the early follicular and one during the luteal phase of the MC. Blood samples were collected at rest before each exercise session and analyzed for Estradiol-β-17 to confirm the MC phase. Carbohydrate (CHO) utilization and oxidation values were significantly lower (p < 0.05) in the luteal (utilization: 51.6 ± 16.7%; oxidation: 1.22 ± 0.56 g/min; effect size (ES) = 0.45, 0.27) than follicular phase (utilization: 58.2 ± 15.1%; oxidation: 1.38 ± 0.60 g/min) exercise sessions. Conversely, fat utilization and oxidation values were significantly (p < 0.05) higher in the luteal (utilization: 48.4 ± 16.7%; oxidation: 0.49 ± 0.19 g/min; ES = 0.45,0.28) than follicular phase (utilization: 41.8 ± 15.1%; oxidation: 0.41 ± 0.14 g/min). Estradiol-β-17 concentrations were significantly (p < 0.01) greater during the luteal (518.5 ± 285.4 pmol/L; ES = 0.75) than follicular phase (243.8 ± 143.2 pmol/L). Results suggest a greater use of fat and reduced amount of CHO usage during the luteal versus follicular phase, directly related to the change in resting estradiol-β-17. Future research should investigate the role these changes may play in female athletic performance.


1987 ◽  
Vol 116 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Jocelyne Brun ◽  
Bruno Claustrat ◽  
Michel David

Abstract. Nocturnal urinary excretion of melatonin, LH, progesterone and oestradiol was measured by radioimmunoassay in nine normal women during a complete cycle. In addition, these hormonal excretions were studied in two women taking an oral contraceptive. A high within-subject coefficient of variation was observed for melatonin excretion in the two groups. In the nine normal cycling women, melatonin excretion was not decreased at the time of ovulation, but was significantly increased during the luteal phase compared with that of the follicular phase (P < 0.01). These data are consistent with a positive relationship between melatonin and progesterone during the luteal phase. In the two women under an oral contraceptive, melatonin excretion was found within the same range as for the other nine. The results are discussed in terms of pineal investigation in human.


Author(s):  
Ana B. Peinado ◽  
Victor M. Alfaro-Magallanes ◽  
Nuria Romero-Parra ◽  
Laura Barba-Moreno ◽  
Beatriz Rael ◽  
...  

Background: The increase in exercise levels in the last few years among professional and recreational female athletes has led to an increased scientific interest about sports health and performance in the female athlete population. The purpose of the IronFEMME Study described in this protocol article is to determine the influence of different hormonal profiles on iron metabolism in response to endurance exercise, and the main markers of muscle damage in response to resistance exercise; both in eumenorrheic, oral contraceptive (OC) users and postmenopausal well-trained women. Methods: This project is an observational controlled randomized counterbalanced study. One hundered and four (104) active and healthy women were selected to participate in the IronFEMME Study, 57 of which were eumenorrheic, 31 OC users and 16 postmenopausal. The project consisted of two sections carried out at the same time: iron metabolism (study I) and muscle damage (study II). For the study I, the exercise protocol consisted of an interval running test (eight bouts of 3 min at 85% of the maximal aerobic speed), whereas the study II protocol was an eccentric-based resistance exercise protocol (10 sets of 10 repetitions of plate-loaded barbell parallel back squats at 60% of their one repetition maximum (1RM) with 2 min of recovery between sets). In both studies, eumenorrheic participants were evaluated at three specific moments of the menstrual cycle: early-follicular phase, late-follicular phase and mid-luteal phase; OC users performed the trial at two moments: withdrawal phase and active pill phase. Lastly, postmenopausal women were only tested once, since their hormonal status does not fluctuate. The three-step method was used to verify the menstrual cycle phase: calendar counting, blood test confirmation, and urine-based ovulation kits. Blood samples were obtained to measure sex hormones, iron metabolism parameters, and muscle damage related markers. Discussion: IronFEMME Study has been designed to increase the knowledge regarding the influence of sex hormones on some aspects of the exercise-related female physiology. Iron metabolism and exercise-induced muscle damage will be studied considering the different reproductive status present throughout well-trained females’ lifespan.


1991 ◽  
Vol 81 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Karin Manhem ◽  
Christina Jern ◽  
Martin Pilhall ◽  
Guy Shanks ◽  
Sverker Jern

1. The haemodynamic effects of hormonal changes during the menstrual cycle were examined in 11 normotensive women (age 20–46 years). The subjects were studied on days 2–8 (follicular phase) and days 18–26 (luteal phase) in a randomized order. A standardized mental stress test and a 24 h recording of ambulatory blood pressure and heart rate were performed. 2. Pre-stress resting levels of heart rate and blood pressure were similar during the two phases of the menstrual cycle. 3. During mental stress, the heart rate response was significantly greater during the luteal phase than during the follicular phase (14.7 versus 9.7 beats/min; P < 0.05). 4. Blood pressure, plasma catecholamine concentrations and subjective stress experience increased significantly in response to stress, without any significant differences between the two phases. 5. During 24 h ambulatory monitoring, higher levels of systolic blood pressure and heart rate were observed in the luteal phase than in the follicular phase (P < 0.005 and P < 0.0001, respectively). 6. These data indicate that cyclic variations in female sex hormones not only affect systolic blood pressure and heart rate, but also alter the haemodynamic responses to psychosocial stress.


Author(s):  
Isadora Cristina Ribeiro ◽  
Joao Paulo Borin

The training of a motor skill promotes physical performance and depends on several variables. For women, the menstrual cycle is the one to be highlighted. Studies have focused on the analysis motor skills during this period and emphasize hormonal issues with low attention to the physcal performance. Thus, the objective of this study was to verify the physical performance in different motor skills during the phases of the menstrual cycle in two different cycles. During eight weeks, twelve women, divided into a trained and begginer group, underwent training for different motor skills, and at each stage of the menstrual cycle performed performance tests. The results suggest a higher strength of the lower limbs and a greater capacity of endurance in the Luteal phase in relation to the Follicular phase, but for the flexibility there were no significant differences, suggesting that there is no influence of the menstrual cycle on this motor skill.


Sign in / Sign up

Export Citation Format

Share Document