scholarly journals Analysis of the physical performance of women in different motor skills during the phases of the menstrual cycle

Author(s):  
Isadora Cristina Ribeiro ◽  
Joao Paulo Borin

The training of a motor skill promotes physical performance and depends on several variables. For women, the menstrual cycle is the one to be highlighted. Studies have focused on the analysis motor skills during this period and emphasize hormonal issues with low attention to the physcal performance. Thus, the objective of this study was to verify the physical performance in different motor skills during the phases of the menstrual cycle in two different cycles. During eight weeks, twelve women, divided into a trained and begginer group, underwent training for different motor skills, and at each stage of the menstrual cycle performed performance tests. The results suggest a higher strength of the lower limbs and a greater capacity of endurance in the Luteal phase in relation to the Follicular phase, but for the flexibility there were no significant differences, suggesting that there is no influence of the menstrual cycle on this motor skill.

1978 ◽  
Vol 88 (3) ◽  
pp. 633-642 ◽  
Author(s):  
A. Römmler ◽  
S. Baumgarten ◽  
E. Schneller ◽  
U. Schwartz ◽  
J. Hammerstein

ABSTRACT The effects of six consecutive LH-RH injections (25 μg intravenously each) at 90 min intervals on serum gonadotrophin and serum ovarian steroid levels were investigated in cyclic women (n= 13) in the follicular, midcycle and luteal phase of the menstrual cycle. The maximum response of LH pituitary reaction to repeated LH-RH injections was smallest in the follicular phase, higher in the luteal phase and greatest in the midcycle phase of the menstrual cycle. The maximum response of FSH reaction was small both in the follicular and luteal phase and again greatest in the midcycle phase. The pituitary response pattern after six consecutive LH-RH injections also varied throughout the cycle. On the one hand there was a constant pronounced increase in the response from the first to the second LH-RH injection for both LH and FSH, while the second of all six increments (Δ2) was the maximum increment. On the other hand, for both LH and FSH the responses Δ3 to Δ6 decreased progressively in the luteal phase and showed an even further pronounced decrease in the midcycle phase, indicating an exhaustion of pituitary secretion. In the follicular phase, however, the decrease in the responses Δ3 to Δ6 for LH was small, but significant. For FSH no significant changes between the responses Δ2 to Δ6 were observed. Secondary to the elevated gonadotrophin levels, serum levels of oestradiol, 17-hydroxyprogesterone and progesterone increased slightly in the follicular phase and distinctly in the luteal phase of the cycle. Possible mechanisms are discussed which might provide an explanation for the observed augmentation and subsequent diminution of pituitary reaction.


Author(s):  
Shehnaz Shaikh

Introduction: Menstrual cycle or menstruation involved discharge of sanguinous fluid and a sloughing of uterine wall. In women menstruation occurs at regular intervals on an average of 28 days, although most women gave a history of regular intervals of 28 to 30 days. About 10% -15% of women showed cycle at the precise 28 ± 2 days intervals when menstrual calendar was utilized. Normally in young women in different phases of ovarian cycles the plasma levels of estrogen vary. Ovulation occurs in the first 12-13th day of menstrual cycle, which is termed estrogen surge and second occurs in mid-luteal phase. During mid cycle or follicular phase of menstrual cycle the plasma concentration of progesterone is very low about 0.9 ng/mL. its level starts rising owing to secretion from the granulose cells. During luteal phase progesterone level reaches its peak value of 18 ng/mL and its level fall to a minimum value toward the end of the cycle. Estrogen affects local and systemic vasodilation. The menstrual cycle envelops two fundamental stages, the follicular stage (FP) and the luteal stage (LP). The follicular stage can part advance into two substages; the early FP, which is characterised with moo concentrations of both the key hormones estrogen and progesterone; and the mid FP where estrogen is tall autonomously from progesterone. The LP is epitomized by tall concentration of both estrogen and progesterone. These two fundamental stages are isolated by a soak surge in luteinizing hormone activating ovulation. These recurrent changes are said to be frequency unsurprising while long time. Aim: The main aim of this study is to evaluate the Cardiorespiratory functions changes during different Phases of Menstrual Cycle.   Material and methods: In this study, 20 with normal weight, 20 with obese and 20 with overage were included and taken them as a sample size. In this study all the young women those were recruited as a sample size are unmarried, undergraduate female student with the between the age group of 18-22years, having regular 28+6 days menstrual cycle for at least last 6months prior to this study. For the collection of data all the participants were instructed to attend the physiology lab department during each of three different phases. Day-2 during menstrual phase, Day-7, during follicular phase and Day-22 during luteal phase and the following parameters were recorded as Anthropometric measurements, measuring of pulse rate and blood pressure and cardiac efficiency test. Result: In general, work out proficiency changed essentially amid the distinctive stages of the menstrual cycle with the most elevated amid luteal stage and least amid menstrualo stage. There was no critical contrast in impact test amid menstrual stage, follicular stage and luteal stage of menstrual cycle among three bunches of people. Conclusion: We have watched noteworthy increment in cardiac and respiratory proficiency within the luteal stage of the menstrual cycle in ordinary weight people. Lower wellness levels were watched in overweight and stout females. In this manner hone of customary work out and admissions of solid slim down which offer assistance in lessening the weight and in turn the BMI will offer assistance in improving the physical wellness of the people. Keywords: Cardiorespiratory, Menstrual cycle, expiratory blast test


Author(s):  
Hannah N. Willett ◽  
Kristen J. Koltun ◽  
Anthony C. Hackney

This study examined the effect of estradiol-β-17 across the menstrual cycle (MC) during aerobic exercise on energy substrate utilization and oxidation. Thirty-two eumenorrheic (age = 22.4 ± 3.8 y (mean ± SD)), physically active women participated in two steady-state running sessions at 65% of VO2max, one during the early follicular and one during the luteal phase of the MC. Blood samples were collected at rest before each exercise session and analyzed for Estradiol-β-17 to confirm the MC phase. Carbohydrate (CHO) utilization and oxidation values were significantly lower (p < 0.05) in the luteal (utilization: 51.6 ± 16.7%; oxidation: 1.22 ± 0.56 g/min; effect size (ES) = 0.45, 0.27) than follicular phase (utilization: 58.2 ± 15.1%; oxidation: 1.38 ± 0.60 g/min) exercise sessions. Conversely, fat utilization and oxidation values were significantly (p < 0.05) higher in the luteal (utilization: 48.4 ± 16.7%; oxidation: 0.49 ± 0.19 g/min; ES = 0.45,0.28) than follicular phase (utilization: 41.8 ± 15.1%; oxidation: 0.41 ± 0.14 g/min). Estradiol-β-17 concentrations were significantly (p < 0.01) greater during the luteal (518.5 ± 285.4 pmol/L; ES = 0.75) than follicular phase (243.8 ± 143.2 pmol/L). Results suggest a greater use of fat and reduced amount of CHO usage during the luteal versus follicular phase, directly related to the change in resting estradiol-β-17. Future research should investigate the role these changes may play in female athletic performance.


1987 ◽  
Vol 116 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Jocelyne Brun ◽  
Bruno Claustrat ◽  
Michel David

Abstract. Nocturnal urinary excretion of melatonin, LH, progesterone and oestradiol was measured by radioimmunoassay in nine normal women during a complete cycle. In addition, these hormonal excretions were studied in two women taking an oral contraceptive. A high within-subject coefficient of variation was observed for melatonin excretion in the two groups. In the nine normal cycling women, melatonin excretion was not decreased at the time of ovulation, but was significantly increased during the luteal phase compared with that of the follicular phase (P < 0.01). These data are consistent with a positive relationship between melatonin and progesterone during the luteal phase. In the two women under an oral contraceptive, melatonin excretion was found within the same range as for the other nine. The results are discussed in terms of pineal investigation in human.


1991 ◽  
Vol 81 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Karin Manhem ◽  
Christina Jern ◽  
Martin Pilhall ◽  
Guy Shanks ◽  
Sverker Jern

1. The haemodynamic effects of hormonal changes during the menstrual cycle were examined in 11 normotensive women (age 20–46 years). The subjects were studied on days 2–8 (follicular phase) and days 18–26 (luteal phase) in a randomized order. A standardized mental stress test and a 24 h recording of ambulatory blood pressure and heart rate were performed. 2. Pre-stress resting levels of heart rate and blood pressure were similar during the two phases of the menstrual cycle. 3. During mental stress, the heart rate response was significantly greater during the luteal phase than during the follicular phase (14.7 versus 9.7 beats/min; P < 0.05). 4. Blood pressure, plasma catecholamine concentrations and subjective stress experience increased significantly in response to stress, without any significant differences between the two phases. 5. During 24 h ambulatory monitoring, higher levels of systolic blood pressure and heart rate were observed in the luteal phase than in the follicular phase (P < 0.005 and P < 0.0001, respectively). 6. These data indicate that cyclic variations in female sex hormones not only affect systolic blood pressure and heart rate, but also alter the haemodynamic responses to psychosocial stress.


2021 ◽  
Vol 3 ◽  
Author(s):  
Dan Martin ◽  
Kate Timmins ◽  
Charlotte Cowie ◽  
Jon Alty ◽  
Ritan Mehta ◽  
...  

Objectives: This study aimed to assess how menstrual cycle phase and extended menstrual cycle length influence the incidence of injuries in international footballers.Methods: Over a 4-year period, injuries from England international footballers at training camps or matches were recorded, alongside self-reported information on menstrual cycle characteristics at the point of injury. Injuries in eumenorrheic players were categorized into early follicular, late follicular, or luteal phase. Frequencies were also compared between injuries recorded during the typical cycle and those that occurred after the cycle would be expected to have finished. Injury incidence rates (per 1,000 person days) and injury incidence rate ratios were calculated for each phase for all injuries and injuries stratified by type.Results: One hundred fifty-six injuries from 113 players were eligible for analysis. Injury incidence rates per 1,000 person-days were 31.9 in the follicular, 46.8 in the late follicular, and 35.4 in the luteal phase, resulting in injury incidence rate ratios of 1.47 (Late follicular:Follicular), 1.11 (Luteal:Follicular), and 0.76 (Luteal:Late follicular). Injury incident rate ratios showed that muscle and tendon injury rates were 88% greater in the late follicular phase compared to the follicular phase, with muscle rupture/tear/strain/cramps and tendon injuries/ruptures occurring over twice as often during the late follicular phase compared to other phases 20% of injuries were reported as occurring when athletes were “overdue” menses.Conclusion: Muscle and tendon injuries occurred almost twice as often in the late follicular phase compared to the early follicular or luteal phase. Injury risk may be elevated in typically eumenorrheic women in the days after their next menstruation was expected to start.


2009 ◽  
Vol 27 (22) ◽  
pp. 3620-3626 ◽  
Author(s):  
Clive S. Grant ◽  
James N. Ingle ◽  
Vera J. Suman ◽  
Daniel A. Dumesic ◽  
D. Lawrence Wickerham ◽  
...  

Purpose For nearly two decades, multiple retrospective reports, small prospective studies, and meta-analyses have arrived at conflicting results regarding the value of timing surgical intervention for breast cancer on the basis of menstrual cycle phase. We present the results of a multi–cooperative group, prospective, observational trial of menstrual cycle phase and outcome after breast cancer surgery, led by the North Central Cancer Treatment Group (NCCTG) in collaboration with the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the International Breast Cancer Study Group (IBCSG). Patients and Methods Premenopausal women age 18 to 55 years, who were interviewed for menstrual history and who were surgically treated for stages I to II breast cancer, had serum drawn within 1 day of surgery for estradiol, progesterone, and luteinizing hormone levels. Menstrual history and hormone levels were used to determine menstrual phase: luteal, follicular, and other. Disease-free survival (DFS) and overall survival (OS) rates were determined by Kaplan-Meier method and were compared by using the log-rank test and Cox proportional hazard modeling. Results Of 1,118 women initially enrolled, 834 women comprised the study cohort: 230 (28%) in luteal phase; 363 (44%) in follicular phase; and 241 grouped as other. During a median follow-up of 6.6 years, and in analysis that accounted for nodal disease, estrogen receptor status, adjuvant radiation therapy or chemotherapy, neither DFS nor OS differed with respect to menstrual phase. The 5-year DFS rates were 82.7%, 82.1%, and 79.2% for follicular, luteal, or other phases, respectively. Corresponding OS survival rates were 91.9%, 92.2%, and 91.8%, respectively. Conclusion When menstrual cycle phases were strictly defined, neither DFS nor OS differed between women who underwent surgery during the follicular phase versus the luteal phase. Nearly 30% of the patients did not meet criteria for either follicular- or luteal-phase categories.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Biscaro ◽  
A R Lorenzon ◽  
E L Motta ◽  
C Gomes

Abstract Study question Is there a difference between IVF outcomes in patients undergoing follicular versus luteal phase ovarian stimulation in different menstrual cycles? Summary answer Number of euploid blastocyst were higher in luteal phase ovarian stimulation IVF cycles. All other outcomes were similar between follicular and luteal phase IVF cycles. What is known already It has been published that human beings can have two or three follicular recruitment waves as observed in animals studies a long time ago. From these findings, several recent studies showed that two egg retrievals at the same menstrual cycle, named as Duo Stim, optimize time and IVF outcomes in women with low ovarian reserve due to more eggs retrieved in a shorter period with consequently higher probability of having good embryos to transfer. However, there is no knowledge about diferences concerning IVF outcomes between folicular and luteal ovarian stimulation, performed at the same women in different menstrual cycles. Study design, size, duration Retrospective, case-control study in a single IVF center. One-hundred-two patients who had two IVF treatments – the first cycle initiating ovarian stimulation at follicular phase (FPS) and the second cycle initiating after a spontaneous ovulation at luteal phase (LPS) – in different menstrual cycles (until 6 months apart) between 2014 and 2020, were included. Statistical analysis was performed with Mann-Whitney test and was considered significant when p ≤ 0.05. Data is represented as mean±SD. Participants/materials, setting, methods Patients underwent two IVF treatments in different menstrual cycles; the FPS IVF treatment was initiating at D2/D3 of menstrual cycle and the LPS treatment started three or four days after spontaneous ovulation, if at least 4 antral follicles were detected. Both IVF treatments were performed with and antagonist protocol and freeze all strategy. The majority of patients presents low ovarian reserve/Ovarian age as primary infertility factor (84.3%). Main results and the role of chance Patient’s mean age was 39.30±3.15 years, BMI (22.66±3.16) and AMH levels (0.85±0.85 ng/mL). Comparison of hormonal levels at the beginning of ovarian stimulation showed differences for FPS vs LPS, as expected: E2 (39.69±31,10 pg/mL vs 177.33±214.26 pg/mL,p&lt; 0.0001) and P4 (0.76±2.47ng/mL vs 3,00±5.00 ng/mL,p&lt; 0.0001). However, E2 and P4 at the day of oocyte maturation trigger were not different between FPS and LPS (1355.24±895.73 pg/mL vs 1133.14±973.01 ng/mL,p=0.0883 and 1.12±1.49 ng/mL vs 2.94±6.51,p=0.0972 respectively). There was no difference for total dose of gonadotrofins (FPS 2786.43±1102.39.01UI vs LPS 2824.12±1188.87UI, p = 0,8578), FSH (FPS 9.50±4.98 vs LPS 11.90±12.99,p=0.7502) and AFC (FPS 7.13±4.25 vs LPS 6.42±4.65,p=0,0944). From 102 patients that started ovarian stimulation, 78 had 1 or more oocyte collect in FPS group and 75 in LPS group: OPU (FPS 4.78±4.93 vs LPS 4.65±5.54,p=0.7889), number of MII (FPS 3.21±3.52 vs LPS 3.40±4.53,p=0.7889). From those, 52 patients performed ICSI in both cycles; fertilization rate 64.9%±28.6% for FPS vs 62.1%±32.4% for LPS,p=0.7899) and blastocyst formation 2.15±2.15 for FPS vs 2.54±2.35,p=0.3496). Data from 25 patients who had embryo biopsy for PGT-A showed similar number of blastocyst biopsed (2.12±1.72 FPS vs 2.48±1.71 LPS,p=0.3101) and a statistically significant difference regarding number of euploid blastocyst (0,20±0,41 FPS vs 0,96±0,93 LPS,p=0,0008). Limitations, reasons for caution This is a retrospective study in a limited number of patients. Therefore, it is not possible to make a definitive conclusion that LPS proportionate higher number of euploid than FPS. More studies are necessary to investigate not only IVF outcomes but also the impact on pregnancy rates. Wider implications of the findings: In our study, LPS protocol after spontaneous ovulation, presents similar IVF outcomes compared to routinely FPS protocol. Intriguingly, the number of euploid blastocyst was significant higher in LPS, which may be further investigated. In this way, LPS is another option of IVF treatment, and may optimize time and treatment results. Trial registration number Not applicable


1986 ◽  
Vol 32 (6) ◽  
pp. 948-951 ◽  
Author(s):  
J Bourque ◽  
J Sulon ◽  
E Demey-Ponsart ◽  
J C Sodoyez ◽  
U Gaspard

Abstract We describe a direct radioimmunoassay for progesterone in saliva. Results for extracted and unextracted samples agree well, showing that extraction with petroleum ether is unnecessary. The direct assay is specific and accurate, and detects as little as 2 pg of progesterone per tube (12 pmol/L). Intra- and inter-assay CVs are less than 10%. The correlation between concentrations of progesterone in saliva and plasma is good during the luteal phase of the menstrual cycle (r = 0.78, p less than 0.001, n = 76) but not during the follicular phase. We present mean concentrations of progesterone in saliva and plasma for the whole cycle in 14 normal women. Although citric acid is an effective salivary-flow stimulant, its deleterious effect on the direct radioimmunoassay precludes its use with this assay for monitoring ovulation.


2015 ◽  
Vol 31 (3) ◽  
pp. 1044 ◽  
Author(s):  
Patricia Sariñana-González ◽  
Sara Vitoria-Estruch ◽  
Ángel Romero-Martínez ◽  
Luis Moya-Albiol

Few studies have examined therelationship between the cortisol awakening response (CAR) and aggression inhealthy youth adults. This study analyzes this relationship in 83 women (38 inluteal phase and 45 in follicular phase of menstrual cycle) and 20 men.Salivary-free cortisol measures of the CAR were obtained immediately followingawakening and 30, 45, and 60 minutes afterwards. Additionally, participantscompleted a self-report of aggression. Men presented lower levels of CAR thanwomen in luteal phase. Men were also liable to present more physical aggressionthan women, independently of their menstrual phase. General aggression andspecifically verbal aggression are predictors of CAR in men. In women, verbalaggression predicts CAR during the follicular phase of the menstrual cycle;whereas anger and physical aggression do so during the luteal phase. CAR may beused as a valid marker of proneness to aggression – but must be considered differentlydepending on gender and menstrual cycle of women. This study offers relevantinformation on the hormonal bases of aggression and so contributes to theliterature on alleviating problems related to violence.


Sign in / Sign up

Export Citation Format

Share Document