scholarly journals In Vitro Evaluation of Common Antimicrobial Solutions Used for Breast Implant Soaking and Breast Pocket Irrigation – Part 1: Efficacy Against Planktonic Bacteria

Author(s):  
Mark L Jewell ◽  
Sara Hariri ◽  
Ellen E Lantz ◽  
Hillary L Jewell ◽  
Aaron D Strickland ◽  
...  

Abstract Background Planktonic bacteria can be inadvertently introduced during breast surgery procedures, which are hypothesized to lead to complications such as infection, capsular contracture, BIA-ALCL, and a prolonged local inflammatory response. The use of antimicrobial solutions such as triple antibiotic solution (TAB) and/or 10% povidone-iodine (PI), in breast pocket irrigation or implant soaking have been proposed to reduce planktonic bacterial attachment and potential complications. Objectives A series of in vitro assessments were performed to evaluate the antimicrobial utility of triple antibiotic solution (TAB) and PI, either alone or in combination, against planktonic bacteria. Methods Planktonic gram-positive and gram-negative bacterial strains were exposed to TAB and PI +/- TAB for up to 10 minutes in a bacterial time-kill assay. Efficacy of various dilutions of PI as well as the effects of serum protein on PI efficacy were also investigated. Results TAB was ineffective at the timeframes tested (≤ 10 minutes) when used alone; however, when used with PI, significant log reduction of all tested planktonic species was achieved. PI alone was also effective, even including dilute concentrations (e.g., 0.5% PI), although the presence of serum proteins required higher concentrations of PI (e.g., 2.5%) to eradicate the bacterial load. Conclusions Our data suggest PI-containing solutions may be preferred over either saline or TAB without PI for primary breast pocket irrigation and implant soaking in primary breast surgeries as a means to significantly reduce planktonic bacteria. These data provide an impetus for surgeons to re-evaluate the efficacy of TAB solution in these clinical settings.

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1122 ◽  
Author(s):  
Annika Sünderhauf ◽  
René Pagel ◽  
Axel Künstner ◽  
Anika E. Wagner ◽  
Jan Rupp ◽  
...  

Non-caloric artificial sweeteners are frequently discussed as components of the “Western diet”, negatively modulating intestinal homeostasis. Since the artificial sweetener saccharin is known to depict bacteriostatic and microbiome-modulating properties, we hypothesized oral saccharin intake to influence intestinal inflammation and aimed at delineating its effect on acute and chronic colitis activity in mice. In vitro, different bacterial strains were grown in the presence or absence of saccharin. Mice were supplemented with saccharin before or after induction of acute or chronic colitis using dextran sodium sulfate (DSS) and the extent of colitis was assessed. Ex vivo, intestinal inflammation, fecal bacterial load and composition were studied by immunohistochemistry analyses, quantitative PCR, 16 S RNA PCR or next generation sequencing in samples collected from analyzed mice. In vitro, saccharin inhibited bacterial growth in a species-dependent manner. In vivo, oral saccharin intake reduced fecal bacterial load and altered microbiome composition, while the intestinal barrier was not obviously affected. Of note, DSS-induced colitis activity was significantly improved in mice after therapeutic or prophylactic treatment with saccharin. Together, this study demonstrates that oral saccharin intake decreases intestinal bacteria count and hence encompasses the capacity to reduce acute and chronic colitis activity in mice.


Author(s):  
Mark L Jewell ◽  
Nina Bionda ◽  
Alison V Moran ◽  
Elizabeth J Bevels ◽  
Hillary L Jewell ◽  
...  

Abstract Background Biofilm-associated bacteria have been observed in both breast implant revision and tissue expander-implant exchange surgeries. The utilization of antimicrobial solutions in breast surgery, especially those containing triple antibiotics (TAB) and/or 10% povidone-iodine (PI), may help reduce existing biofilm-associated bacteria, which is particularly important in a mature breast pocket that may contain residual bacteria from a previously colonized implant surface or, theoretically, bacteria that may arrive postoperatively through hematogenous spread. Objectives A series of in vitro assessments was performed to evaluate the antimicrobial utility of TAB and PI, either alone or in combination, against preformed biofilm-associated bacteria. Methods Preformed biofilm-associated gram-positive and gram-negative bacterial strains were exposed to TAB and PI ± TAB for up to 30 minutes in a bacterial time-kill assay. Efficacy of various dilutions of PI and the effects of serum protein on PI efficacy were also investigated. Results TAB was ineffective at the timeframes tested when utilized alone; when utilized in conjunction with PI, significant log reduction of all biofilm-associated bacterial species tested was achieved when treated for at least 5 minutes. PI alone at a concentration of 25% or higher was also effective, although its efficacy was negatively affected by increasing serum protein concentration only for Staphylococcus epidermidis. Conclusions Our data indicate that PI-containing solutions significantly reduce biofilm-associated bacteria, suggesting potential utility for breast pocket irrigation during revision or exchange surgeries. Care should be taken to minimize excessive dilution of PI to maintain efficacy.


2020 ◽  
Vol 36 (2) ◽  
pp. 79-83
Author(s):  
Asma Akter Bhuiyan ◽  
Mehran Mosharraff Hossain Niloy ◽  
Anamika Chakrabarty ◽  
Syeda Muntaka Maniha ◽  
Rashed Noor

Consumption of a range of antibiotics upon bacterial infections is a common chemotherapeutic practice. Current study attempted to detect the in vitro anti-bacterial activities of such finished medicaments against some of the selected bacterial strains in order to examine their sustainable effectiveness against microorganisms. A total of six categories of samples were randomly collected from different pharmacies within the city of Dhaka. The antibacterial susceptibility tests were conducted employing the Kirby-Bauer (agar well diffusion) method. The test bacterial strains used in this study were Escherichia coli, Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa and P. putida and P. fluorescence. While E. coli was found to be sensitive towards all the antibiotics used, others showed resistance to a significant extent. flucloxacillin, cephradine and salbutamol were noticed to be completely inactive against Pseudomonas species. Besides, the salbutamol was found only to suppress the growth of E. coli but the other five test organisms were completely resistant against this antibiotic solution. Bangladesh J Microbiol, Volume 36 Number 2 December 2019, pp 79-83


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2019 ◽  
Vol 16 (3) ◽  
pp. 245-248
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Ehsan Ullah Mughal ◽  
Muhammad Naveed Zafar ◽  
Amara Mumtaz ◽  
...  

Background: (±)-6,8-Dihydroxy-3-undecyl-3,4-dihydroisochromen-1-one is one of the structural analog of several substituted undecylisocoumarins isolated from Ononis natrix (Fabaceae), has been successfully synthesized by direct condensation of homopthalic acid (1) with undecanoyl chloride yields isochromen-1-one (2). Methods: Alkaline hydrolysis of (2) gave the corresponding keto-acid (3), which is then reduced to hydroxy acid (4) then its cyclodehydration was carried out with acetic anhydride to afford 3,4- dihydroisochromen-1-one (5). Followed by demethylation step, the synthesis of target 6,8- dihydroxy-7-methyl-3-undecyl-3,4-dihydroisocoumarin (6) was achieved. Results: In vitro antibacterial screening of all the synthesized compounds were carried out against ten bacterial strains by agar well diffusion method. Conclusion: Newly synthesized molecules exhibited moderate antibacterial activity and maximum inhibition was observed against Bacillus subtilus and Salmonella paratyphi.


2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


2020 ◽  
Vol 16 (4) ◽  
pp. 389-401 ◽  
Author(s):  
Hanane Boucherit ◽  
Abdelouahab Chikhi ◽  
Abderrahmane Bensegueni ◽  
Amina Merzoug ◽  
Jean-Michel Bolla

Background: The great emergence of multi-resistant bacterial strains and the low renewal of antibiotics molecules are leading human and veterinary medicine to certain therapeutic impasses. Therefore, there is an urgent need to find new therapeutic alternatives including new molecules in the current treatments of infectious diseases. Methionine aminopeptidase (MetAP) is a promising target for developing new antibiotics because it is essential for bacterial survival. Objective: To screen for potential MetAP inhibitors by in silico virtual screening of the ZINC database and evaluate the best potential lead molecules by in vitro studies. Methods: We have considered 200,000 compounds from the ZINC database for virtual screening with FlexX software to identify potential inhibitors against bacterial MetAP. Nine chemical compounds of the top hits predicted were purchased and evaluated in vitro. The antimicrobial activity of each inhibitor of MetAP was tested by the disc-diffusion assay against one Gram-positive (Staphylococcus aureus) and two Gram-negative (Escherichia coli & Pseudomonas aeruginosa) bacteria. Among the studied compounds, compounds ZINC04785369 and ZINC03307916 showed promising antibacterial activity. To further characterize their efficacy, the minimum inhibitory concentration was determined for each compound by the microdilution method which showed significant results. Results: These results suggest compounds ZINC04785369 and ZINC03307916 as promising molecules for developing MetAP inhibitors. Conclusion: Furthermore, they could therefore serve as lead molecules for further chemical modifications to obtain clinically useful antibacterial agents.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Sign in / Sign up

Export Citation Format

Share Document