scholarly journals Fractionation of Adipose Tissue Procedure With a Disposable One-Hole Fractionator

2019 ◽  
Vol 40 (4) ◽  
pp. NP194-NP201 ◽  
Author(s):  
Joris A Van Dongen ◽  
Olivier F E Gostelie ◽  
Lucienne A Vonk ◽  
Julia J De Bruijn ◽  
Berend Van Der Lei ◽  
...  

Abstract Background Adipose tissue has been widely used in regenerative surgery for its therapeutic potential. This potential is often ascribed to the stromal vascular fraction (SVF), which can be mechanically isolated. Mechanical isolation results in an SVF that retains intact cell-cell communication including extracellular matrix and is therefore named tissue-SVF (tSVF). Objectives The aim of this study was to evaluate a new disposable 1-hole fractionator for fractionation of adipose tissue (FAT), and compare this new device with the existing reusable 3-hole fractionator. Methods The composition of tSVF obtained via the 1-hole fractionator was histologically and histochemically compared to unprocessed adipose tissue. The number of viable nuclear cells in tSVF obtained by the 1-hole and 3-hole fractionators as well as unprocessed adipose tissue were compared after enzymatic isolation and tested for colony-forming capacity. Flow cytometry was used to compare different cell compositions based on surface marker expression between tSVF isolated by the two types of fractionators. Results Fractionation of adipose tissue with the 1-hole fractionator condenses vasculature and extracellular matrix by disrupting adipocytes. The number of viable nuclear cells in tSVF obtained with the two fractionators was comparable and significantly higher than unprocessed lipoaspirate. Furthermore, tSVF isolated by both fractionators showed similar cell compositions and comparable colony-forming capacities. Conclusions FAT with a disposable 1-hole fractionator effectively isolates tSVF with a cell count and cell composition comparable to the fraction obtained with the 3-hole reusable fractionator. The disposable 1-hole fractionator, however, is safer and more user friendly.

2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Author(s):  
Zhibin Yang ◽  
Shengyang Jin ◽  
Yu He ◽  
Xinyu Zhang ◽  
Xuefeng Han ◽  
...  

Abstract Background Over the past two decades, fat grafting has been extensively applied in the field of tissue regeneration. Objectives The authors investigated the therapeutic potential of microfat, nanofat and extracellular matrix/stromal vascular fraction gel (SVF-gel) in skin rejuvenation. Methods Microfat was harvested by a cannula with multiple 0.8 mm smooth side holes and processed with a fat stirrer to remove fibers. Nanofat and SVF-gel were prepared according to previously reported methods. We evaluated their structure and viability. Then, stromal vascular fraction (SVF) cells from the three types of samples were isolated and characterized, and the cell viability was compared. Results The microstructure of the three samples showed distinct differences. The microfat group showed a diameter of 100 to 120 .0μmunder the microscope and presented abotryoid shape under Calcein-AM/Propidium iodide (AM/PI) staining. Scanning electron microscopy (SEM) analysis showed that the microfat maintained integral histological structure.In the nanofat group, no viable adipocytes and no normal histological structure were observed, with high levels of free lipids.The SVF-gel group showed uniform dispersion of cells with different sizes and parts of the adipose histological structure. Cell count and culture revealed that the number of viable SVF cells decreased distinctly in the nanofat group compared with the microfat group. In contrast, the number of viable SVF cells in the SVF-gel group increased moderately. Clinical applications with microfat showed marked improvements in skin wrinkles. Conclusions The study showed that the microfat could preserve the integrity of the histological structure and presents the advantages of subcutaneous volumetric restoration and improvement of skin quality in skin rejuvenation compared with the nanofat and SVF-gel.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88
Author(s):  
Ilaria Roato ◽  
Federico Mussano ◽  
Simone Reano ◽  
Filippo Boriani ◽  
Andrea Margara ◽  
...  

This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugation with spectrophotometer analysis. Extracellular matrix preservation was assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparison with untreated lipoaspirate; no differences where reported when varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer’s lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications.


2019 ◽  
Vol 35 (04) ◽  
pp. 358-367 ◽  
Author(s):  
Joris A. van Dongen ◽  
Joeri van Boxtel ◽  
Martin C. Harmsen ◽  
Hieronymus P. Stevens

AbstractLipofilling, the transplantation of adipose tissue, has already been used since the end of the 19th century. For decades, lipofilling was used to restore loss of volume due to aging, trauma, or congenital defects. Later on, the indications for the use of lipofilling expanded by treating aged skin, scars, and improving wound healing. The expansion was caused by the discovery of adipose derived stromal cells (ASCs) in adipose tissue and the development of very fine harvesting and injection cannulas which made it possible to inject small adipose tissue particles in small volume areas, such as the face. ASCs are multipotent stromal cells which reside in the stromal vascular fraction (SVF) of adipose tissue and are able to differentiate in multiple cell lineages and secrete a plurality of growth factors with regenerative potentials. The discovery of ASCs led toward more experimental cell-based therapies, that is, ASCs or SVF isolated by means of enzymatic isolation procedures. Later on, enzymatic isolation procedures were forbidden in many countries by legislation and were replaced by mechanical isolation procedures, such as the Nanofat and Fractionation of Adipose Tissue (FAT) procedures. The Nanofat procedure has been extensively investigated, especially as treatment for skin rejuvenation in the face. Though, substantial evidence is lacking for using facial lipofilling or any therapeutic component, that is, ASCs or SVF for skin rejuvenation to date. In contrast, facial lipofilling to restore loss of volume seems to be promising.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Marta Garcia-Contreras ◽  
Avnesh S. Thakor

AbstractNeurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), are driven by neuroinflammation triggered by activated microglial cells; hence, the phenotypic regulation of these cells is an appealing target for intervention. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) may be a potential therapeutic candidate to treat NDs given their immunomodulatory properties. Evidence suggests that the mechanism of action of hAD-MSCs is through their secretome, which includes secreted factors such as cytokines, chemokines, or growth factors as well as extracellular vesicles (EVs). Recently, EVs have emerged as important mediators in cell communication given, they can transfer proteins, lipids, and RNA species (i.e., miRNA, mRNA, and tRNAs) to modulate recipient cells. However, the therapeutic potential of hAD-MSCs and their secreted EVs has not been fully elucidated with respect to human microglia. In this study, we determined the therapeutic potential of different hAD-MSCs doses (200,000, 100,000, and 50,000 cells) or their secreted EVs (50, 20, or 10 µg/ml), on human microglial cells (HMC3) that were activated by lipopolysaccharides (LPS). Upregulation of inducible nitric oxide synthase (iNOS), an activation marker of HMC3 cells, was prevented when they were cocultured with hAD-MSCs and EVs. Moreover, hAD-MSCs inhibited the secretion of proinflammatory factors, such as IL-6, IL-8, and MCP-1, while their secreted EVs promoted the expression of anti-inflammatory mediators such as IL-10 or TIMP-1 in activated microglia. The present data therefore support a role for hAD-MSCs and their secreted EVs, as potential therapeutic candidates for the treatment of NDs.


Author(s):  
Yuan Ye ◽  
Jingjiang Zou ◽  
Meijun Tan ◽  
Kuikui Hu ◽  
Jindou Jiang

The retention of fat-derived grafts remains a challenge for regenerative medicine. Fat aspirates from patients undergoing liposuction were prepared into standard Coleman fat grafts or further isolated using mechanical shear force to prepare a stromal vascular fraction (SVF)/extracellular matrix (ECM) gel. The retention rate of the SVF/ECM gel was significantly higher than that of the Coleman fat at 3, 14, 28, and 60 days following transplantation on the backs of nude mice. The viscosity of the fat was directly proportional to the shearing force. Although the mechanical isolation did not affect the total number of cells, it significantly decreased the number of living cells. Flow cytometry showed a greater number of mesenchymal stem cells, supra-adventitial (SA)-adipose stromal cells (ASCs), and adipose-derived stem cells but a lower number of endothelial progenitor cells in the SVF/ECM gel than in the Coleman fat. Thus, mechanical isolation of fat can increase the pluripotency of adipocytes, which can improve graft retention in cell therapy.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 53034-53042 ◽  
Author(s):  
Yongzhou Lu ◽  
Chuanlong Jia ◽  
Bo Bi ◽  
Liang Chen ◽  
Yiqun Zhou ◽  
...  

This study provides a novel method in injectable tissue engineering which contains porcine extracellular matrix (ECM) powder scaffolds and stromal-vascular fraction (SVF) cells.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 701-P
Author(s):  
PALLAVI VARSHNEY ◽  
BENJAMIN J. RYAN ◽  
CHIWOON AHN ◽  
MICHAEL W. SCHLEH ◽  
JEFFREY F. HOROWITZ

2014 ◽  
Vol 222 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jillian L Rourke ◽  
Shanmugam Muruganandan ◽  
Helen J Dranse ◽  
Nichole M McMullen ◽  
Christopher J Sinal

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murineGpr1mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) andCmklr1,Gpr1expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygousGpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lackingGpr1exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects ofGpr1deficiency on adiposity, energy balance, and glucose homeostasisin vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


Sign in / Sign up

Export Citation Format

Share Document