scholarly journals Position-wise binding preference is important for miRNA target site prediction

2020 ◽  
Vol 36 (12) ◽  
pp. 3680-3686
Author(s):  
Amlan Talukder ◽  
Xiaoman Li ◽  
Haiyan Hu

Abstract Motivation It is a fundamental task to identify microRNAs (miRNAs) targets and accurately locate their target sites. Genome-scale experiments for miRNA target site detection are still costly. The prediction accuracies of existing computational algorithms and tools are often not up to the expectation due to a large number of false positives. One major obstacle to achieve a higher accuracy is the lack of knowledge of the target binding features of miRNAs. The published high-throughput experimental data provide an opportunity to analyze position-wise preference of miRNAs in terms of target binding, which can be an important feature in miRNA target prediction algorithms. Results We developed a Markov model to characterize position-wise pairing patterns of miRNA–target interactions. We further integrated this model as a scoring method and developed a dynamic programming (DP) algorithm, MDPS (Markov model-scored Dynamic Programming algorithm for miRNA target site Selection) that can screen putative target sites of miRNA-target binding. The MDPS algorithm thus can take into account both the dependency of neighboring pairing positions and the global pairing information. Based on the trained Markov models from both miRNA-specific and general datasets, we discovered that the position-wise binding information specific to a given miRNA would benefit its target prediction. We also found that miRNAs maintain region-wise similarity in their target binding patterns. Combining MDPS with existing methods significantly improves their precision while only slightly reduces their recall. Therefore, position-wise pairing patterns have the promise to improve target prediction if incorporated into existing software tools. Availability and implementation The source code and tool to calculate MDPS score is available at http://hulab.ucf.edu/research/projects/MDPS/index.html. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Soyeon Kim ◽  
YuLong Bai ◽  
Zhenjiang Fan ◽  
Brenda Diergaarde ◽  
George C Tseng ◽  
...  

Abstract Alternative polyadenylation (APA) in breast tumor samples results in the removal/addition of cis-regulatory elements such as microRNA (miRNA) target sites in the 3′-untranslated region (3′-UTRs) of genes. Although previous computational APA studies focused on a subset of genes strongly affected by APA (APA genes), we identify miRNAs of which widespread APA events collectively increase or decrease the number of target sites [probabilistic inference of microRNA target site modification through APA (PRIMATA-APA)]. Using PRIMATA-APA on the cancer genome atlas (TCGA) breast cancer data, we found that the global APA events change the number of the target sites of particular microRNAs [target sites modified miRNA (tamoMiRNA)] enriched for cancer development and treatments. We also found that when knockdown (KD) of NUDT21 in HeLa cells induces a different set of widespread 3′-UTR shortening than TCGA breast cancer data, it changes the target sites of the common tamoMiRNAs. Since the NUDT21 KD experiment previously demonstrated the tumorigenic role of APA events in a miRNA dependent fashion, this result suggests that the APA-initiated tumorigenesis is attributable to the miRNA target site changes, not the APA events themselves. Further, we found that the miRNA target site changes identify tumor cell proliferation and immune cell infiltration to the tumor microenvironment better than the miRNA expression levels or the APA events themselves. Altogether, our computational analyses provide a proof-of-concept demonstration that the miRNA target site information indicates the effect of global APA events with a potential as predictive biomarker.


2010 ◽  
Vol 1 (3) ◽  
pp. 97-112 ◽  
Author(s):  
Richipal Singh Bindra ◽  
Jason T. L. Wang ◽  
Paramjeet Singh Bagga

MicroRNAs (miRNAs) are short single-stranded RNA molecules with 21-22 nucleotides known to regulate post-transcriptional expression of protein-coding genes involved in most of the cellular processes. Prediction of miRNA targets is a challenging bioinformatics problem. AU-rich elements (AREs) are regulatory RNA motifs found in the 3’ untranslated regions (UTRs) of mRNAs, and they play dominant roles in the regulated decay of short-lived human mRNAs via specific interactions with proteins. In this paper, the authors review several miRNA target prediction tools and data sources, as well as computational methods used for the prediction of AREs. The authors discuss the connection between miRNA and ARE-mediated post-transcriptional gene regulation. Finally, a data mining method for identifying the co-occurrences of miRNA target sites in ARE containing genes is presented.


2020 ◽  
Vol 36 (18) ◽  
pp. 4765-4773
Author(s):  
Marieke L Kuijjer ◽  
Maud Fagny ◽  
Alessandro Marin ◽  
John Quackenbush ◽  
Kimberly Glass

Abstract Motivation Conventional methods to analyze genomic data do not make use of the interplay between multiple factors, such as between microRNAs (miRNAs) and the messenger RNA (mRNA) transcripts they regulate, and thereby often fail to identify the cellular processes that are unique to specific tissues. We developed PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to integrate a prior network of miRNA target predictions with target gene co-expression information to model genome-wide gene regulation by miRNAs. We applied PUMA to 38 tissues from the Genotype-Tissue Expression project, integrating RNA-Seq data with two different miRNA target predictions priors, built on predictions from TargetScan and miRanda, respectively. We found that while target predictions obtained from these two different resources are considerably different, PUMA captures similar tissue-specific miRNA–target regulatory interactions in the different network models. Furthermore, the tissue-specific functions of miRNAs we identified based on regulatory profiles (available at: https://kuijjer.shinyapps.io/puma_gtex/) are highly similar between networks modeled on the two target prediction resources. This indicates that PUMA consistently captures important tissue-specific miRNA regulatory processes. In addition, using PUMA we identified miRNAs regulating important tissue-specific processes that, when mutated, may result in disease development in the same tissue. Availability and implementation PUMA is available in C++, MATLAB and Python on GitHub (https://github.com/kuijjerlab and https://netzoo.github.io/). Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (8) ◽  
pp. 2410-2416
Author(s):  
Thomas Bradley ◽  
Simon Moxon

Abstract Motivation MicroRNA (miRNA) target prediction algorithms do not generally consider biological context and therefore generic target prediction based on seed binding can lead to a high level of false-positive predictions. Here, we present FilTar, a method that incorporates RNA-Seq data to make miRNA target prediction specific to a given cell type or tissue of interest. Results We demonstrate that FilTar can be used to: (i) provide sample specific 3′-UTR reannotation; extending or truncating default annotations based on RNA-Seq read evidence and (ii) filter putative miRNA target predictions by transcript expression level, thus removing putative interactions where the target transcript is not expressed in the tissue or cell line of interest. We test the method on a variety of miRNA transfection datasets and demonstrate increased accuracy versus generic miRNA target prediction methods. Availability and implementation FilTar is freely available and can be downloaded from https://github.com/TBradley27/FilTar. The tool is implemented using the Python and R programming languages, and is supported on GNU/Linux operating systems. Supplementary information Supplementary data are available at Bioinformatics online.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181153 ◽  
Author(s):  
Camila M. Lopes-Ramos ◽  
Bruna P. Barros ◽  
Fernanda C. Koyama ◽  
Paola A. Carpinetti ◽  
Julia Pezuk ◽  
...  

Author(s):  
Ida Höijer ◽  
Josefin Johansson ◽  
Sanna Gudmundsson ◽  
Chen-Shan Chin ◽  
Ignas Bunikis ◽  
...  

AbstractA much-debated concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target sites and activity is challenging. Here we present SMRT-OTS and Nano-OTS, two amplification-free long-read sequencing protocols for detection of gRNA driven digestion of genomic DNA by Cas9. The methods were assessed using the human cell line HEK293, which was first re-sequenced at 18x coverage using highly accurate (HiFi) SMRT reads to get a detailed view of all on- and off-target binding regions. We then applied SMRT-OTS and Nano-OTS to investigate the specificity of three different gRNAs, resulting in a set of 55 high-confidence gRNA binding sites identified by both methods. Twenty-five (45%) of these sites were not reported by off-target prediction software, either because they contained four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. We further discovered that a heterozygous SNP can cause allele-specific gRNA binding. Finally, by performing a de novo genome assembly of the HiFi reads, we were able to re-discover 98.7% of the gRNA binding sites without any prior information about the human reference genome. This suggests that CRISPR-Cas9 off-target sites can be efficiently mapped also in organisms where the genome sequence is unknown. In conclusion, the amplification-free sequencing protocols revealed many gRNA binding sites in vitro that would be difficult to predict based on gRNA sequence alignment to a reference. Nevertheless, it is still unknown whether in vivo off-target editing would occur at these sites.


Genomics ◽  
2011 ◽  
Vol 98 (3) ◽  
pp. 189-193 ◽  
Author(s):  
G. Reshmi ◽  
Ramachandran Surya ◽  
V.T. Jissa ◽  
P.S. Saneesh Babu ◽  
N.R. Preethi ◽  
...  

2019 ◽  
Vol 35 (17) ◽  
pp. 3119-3126 ◽  
Author(s):  
Huiyuan Wang ◽  
Huihui Wang ◽  
Hangxiao Zhang ◽  
Sheng Liu ◽  
Yongsheng Wang ◽  
...  

Abstract Motivation MicroRNA (miRNA) and alternative splicing (AS)-mediated post-transcriptional regulation has been extensively studied in most eukaryotes. However, the interplay between AS and miRNAs has not been explored in plants. To our knowledge, the overall profile of miRNA target sites in circular RNAs (circRNA) generated by alternative back splicing has never been reported previously. To address the challenge, we identified miRNA target sites located in alternatively spliced regions of the linear and circular splice isoforms using the up-to-date single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) and Illumina sequencing data in eleven plant species. Results In total, we identified 399 401 and 114 574 AS events from linear and circular RNAs, respectively. Among them, there were 64 781 and 41 146 miRNA target sites located in linear and circular AS region, respectively. In addition, we found 38 913 circRNAs to be overlapping with 45 648 AS events of its own parent isoforms, suggesting circRNA regulation of AS of linear RNAs by forming R-loop with the genomic locus. Here, we present a comprehensive database of miRNA targets in alternatively spliced linear and circRNAs (ASmiR) and a web server for deposition and identification of miRNA target sites located in the alternatively spliced region of linear and circular RNAs. This database is accompanied by an easy-to-use web query interface for meaningful downstream analysis. Plant research community can submit user-defined datasets to the web service to search AS regions harboring small RNA target sites. In conclusion, this study provides an unprecedented resource to understand regulatory relationships between miRNAs and AS in both gymnosperms and angiosperms. Availability and implementation The readily accessible database and web-based tools are available at http://forestry.fafu.edu.cn/bioinfor/db/ASmiR. Supplementary information Supplementary data are available at Bioinformatics online.


2008 ◽  
Vol 30 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Sandrine Tchatchou ◽  
Anke Jung ◽  
Kari Hemminki ◽  
Christian Sutter ◽  
Barbara Wappenschmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document