scholarly journals ProVision: a web-based platform for rapid analysis of proteomics data processed by MaxQuant

2020 ◽  
Vol 36 (19) ◽  
pp. 4965-4967
Author(s):  
James Luke Gallant ◽  
Tiaan Heunis ◽  
Samantha Leigh Sampson ◽  
Wilbert Bitter

Abstract Summary Proteomics is a powerful tool for protein expression analysis and is becoming more readily available to researchers through core facilities or specialized collaborations. However, one major bottleneck for routine implementation and accessibility of this technology to the wider scientific community is the complexity of data analysis. To this end, we have created ProVision, a free open-source web-based analytics platform that allows users to analyze data from two common proteomics relative quantification workflows, namely label-free and tandem mass tag-based experiments. Furthermore, ProVision allows the freedom to interface with the data analysis pipeline while maintaining a user-friendly environment and providing default parameters for fast statistical and exploratory data analysis. Finally, multiple customizable quality control, differential expression plots as well as enrichments and protein–protein interaction prediction can be generated online in one platform. Availability and implementation Quick start and step-by-step tutorials as well as tutorial data are fully incorporated in the web application. This application is available online at https://provision.shinyapps.io/provision/ for free use. The source code is available at https://github.com/JamesGallant/ProVision under the GPL version 3.0 license.

2021 ◽  
Author(s):  
Sebastian Didusch ◽  
Moritz Madern ◽  
Markus Hartl ◽  
Manuela Baccarini

Quantitative proteomics has become an increasingly prominent tool in the study of life sciences. A substantial hurdle for many biologists are, however, the intricacies involved in the associated high troughput data analysis. In order to facilitate this task for users with little background knowledge in proteomics, we have developed amica, a freely available open-source web-based software that accepts proteomic input files from different sources and provides quality control, differential expression, biological network and over-representation analysis on the basis of minimal user input. Scientists can use amica interactively to compare proteins across multiple groups, create customized output graphics, and ultimately export the results in a tab-separated format that can be shared with collaborators. Availability and Implementation: The code for the application, input data and documentation can be accessed online at https://github.com/tbaccata/amica and is also incorporated in the web application. A freely available version of amica is available at https://bioapps.maxperutzlabs.ac.at/app/amica.


2017 ◽  
Author(s):  
April Kim ◽  
Edyta Malolepsza ◽  
Justin Lim ◽  
Kasper Lage

AbstractSummaryIntegrating protein-protein interaction experiments and genetic datasets can lead to new insight into the cellular processes implicated in diseases, but this integration is technically challenging. Here, we present Genoppi, a web application that integrates quantitative interaction proteomics data and results from genome-wide association studies or exome sequencing projects, to highlight biological relationships that might otherwise be difficult to discern. Written in R, Python and Bash script, Genoppi is a user-friendly framework easily deployed across Mac OS and Linux distributions.AvailabilityGenoppi is open source and available at https://github.com/lagelab/[email protected] and [email protected]


2021 ◽  
pp. 193229682098557
Author(s):  
Alysha M. De Livera ◽  
Jonathan E. Shaw ◽  
Neale Cohen ◽  
Anne Reutens ◽  
Agus Salim

Motivation: Continuous glucose monitoring (CGM) systems are an essential part of novel technology in diabetes management and care. CGM studies have become increasingly popular among researchers, healthcare professionals, and people with diabetes due to the large amount of useful information that can be collected using CGM systems. The analysis of the data from these studies for research purposes, however, remains a challenge due to the characteristics and large volume of the data. Results: Currently, there are no publicly available interactive software applications that can perform statistical analyses and visualization of data from CGM studies. With the rapidly increasing popularity of CGM studies, such an application is becoming necessary for anyone who works with these large CGM datasets, in particular for those with little background in programming or statistics. CGMStatsAnalyser is a publicly available, user-friendly, web-based application, which can be used to interactively visualize, summarize, and statistically analyze voluminous and complex CGM datasets together with the subject characteristics with ease.


2019 ◽  
Vol 19 (2) ◽  
pp. 229-261 ◽  
Author(s):  
JAN WIELEMAKER ◽  
FABRIZIO RIGUZZI ◽  
ROBERT A. KOWALSKI ◽  
TORBJÖRN LAGER ◽  
FARIBA SADRI ◽  
...  

AbstractProgramming environments have evolved from purely text based to using graphical user interfaces, and now we see a move toward web-based interfaces, such as Jupyter. Web-based interfaces allow for the creation of interactive documents that consist of text and programs, as well as their output. The output can be rendered using web technology as, for example, text, tables, charts, or graphs. This approach is particularly suitable for capturing data analysis workflows and creating interactive educational material. This article describes SWISH, a web front-end for Prolog that consists of a web server implemented in SWI-Prolog and a client web application written in JavaScript. SWISH provides a web server where multiple users can manipulate and run the same material, and it can be adapted to support Prolog extensions. In this article we describe the architecture of SWISH, and describe two case studies of extensions of Prolog, namely Probabilistic Logic Programming and Logic Production System, which have used SWISH to provide tutorial sites.


2020 ◽  
Vol 36 (10) ◽  
pp. 3246-3247
Author(s):  
Vaclav Brazda ◽  
Jan Kolomaznik ◽  
Jean-Louis Mergny ◽  
Jiri Stastny

Abstract Motivation G-quadruplexes (G4) are important regulatory non-B DNA structures with therapeutic potential. A tool for rational design of mutations leading to decreased propensity for G4 formation should be useful in studying G4 functions. Although tools exist for G4 prediction, no easily accessible tool for the rational design of G4 mutations has been available. Results We developed a web-based tool termed G4Killer that is based on the G4Hunter algorithm. This new tool is a platform-independent and user-friendly application to design mutations crippling G4 propensity in a parsimonious way (i.e., keeping the primary sequence as close as possible to the original one). The tool is integrated into our DNA analyzer server and allows for generating mutated DNA sequences having the desired lowered G4Hunter score with minimal mutation steps. Availability and implementation The G4Killer web tool can be accessed at: http://bioinformatics.ibp.cz. Supplementary information Supplementary data are available at Bioinformatics online.


2002 ◽  
Vol 11 (03) ◽  
pp. 369-387 ◽  
Author(s):  
PETRI MYLLYMÄKI ◽  
TOMI SILANDER ◽  
HENRY TIRRI ◽  
PEKKA URONEN

B-Course is a free web-based online data analysis tool, which allows the users to analyze their data for multivariate probabilistic dependencies. These dependencies are represented as Bayesian network models. In addition to this, B-Course also offers facilities for inferring certain type of causal dependencies from the data. The software uses a novel "tutorial stylerdquo; user-friendly interface which intertwines the steps in the data analysis with support material that gives an informal introduction to the Bayesian approach adopted. Although the analysis methods, modeling assumptions and restrictions are totally transparent to the user, this transparency is not achieved at the expense of analysis power: with the restrictions stated in the support material, B-Course is a powerful analysis tool exploiting several theoretically elaborate results developed recently in the fields of Bayesian and causal modeling. B-Course can be used with most web-browsers (even Lynx), and the facilities include features such as automatic missing data handling and discretization, a flexible graphical interface for probabilistic inference on the constructed Bayesian network models (for Java enabled browsers), automatic prettyHyphen;printed layout for the networks, exportation of the models, and analysis of the importance of the derived dependencies. In this paper we discuss both the theoretical design principles underlying the B-Course tool, and the pragmatic methods adopted in the implementation of the software.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
W. J. Pereira ◽  
F. M. Almeida ◽  
D. Conde ◽  
K. M. Balmant ◽  
P. M. Triozzi ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of transcriptomes, arising as a powerful tool for discovering and characterizing cell types and their developmental trajectories. However, scRNA-seq analysis is complex, requiring a continuous, iterative process to refine the data and uncover relevant biological information. A diversity of tools has been developed to address the multiple aspects of scRNA-seq data analysis. However, an easy-to-use web application capable of conducting all critical steps of scRNA-seq data analysis is still lacking. Summary We present Asc-Seurat, a feature-rich workbench, providing an user-friendly and easy-to-install web application encapsulating tools for an all-encompassing and fluid scRNA-seq data analysis. Asc-Seurat implements functions from the Seurat package for quality control, clustering, and genes differential expression. In addition, Asc-Seurat provides a pseudotime module containing dozens of models for the trajectory inference and a functional annotation module that allows recovering gene annotation and detecting gene ontology enriched terms. We showcase Asc-Seurat’s capabilities by analyzing a peripheral blood mononuclear cell dataset. Conclusions Asc-Seurat is a comprehensive workbench providing an accessible graphical interface for scRNA-seq analysis by biologists. Asc-Seurat significantly reduces the time and effort required to analyze and interpret the information in scRNA-seq datasets.


2021 ◽  
Vol 7 ◽  
Author(s):  
Martin Palma ◽  
Alessandro Zandonai ◽  
Luca Cattani ◽  
Johannes Klotz ◽  
Giulio Genova ◽  
...  

Easily accessible data is an essential requirement for scientific data analysis. The Data Browser Matsch | Mazia was designed to provide a fast and comprehensible solution to access, visualize and download the microclimatic measurements of the IT 25 LT(S)ER Match | Mazia research site in South Tyrol, Northern Italy, with the overall aim to provide straightforward data accessibility and enhance dissemination. Data Browser Matsch | Mazia is a user-friendly web-based application to visualize and download micrometeorological and biophysical time series of the Long-Term Socio-Ecological Research site Matsch | Mazia in South Tyrol, Italy. It is designed both for the general public and researchers. The Data Browser Matsch | Mazia drop-down menus allow the user to query the InfluxDB database in the backend by selecting the measurements, time range, land use and elevation. Interactive Grafana dashboards show dynamic graphs of the time series.


2020 ◽  
Vol 53 (2) ◽  
pp. 587-593
Author(s):  
A. Boulle ◽  
V. Mergnac

RaDMaX online is a major update to the previously published RaDMaX (radiation damage in materials analysed with X-ray diffraction) software [Souilah, Boulle & Debelle (2016). J. Appl. Cryst. 49, 311–316]. This program features a user-friendly interface that allows retrieval of strain and disorder depth profiles in irradiated crystals from the simulation of X-ray diffraction data recorded in symmetrical θ/2θ mode. As compared with its predecessor, RaDMaX online has been entirely rewritten in order to be able to run within a simple web browser, therefore avoiding the necessity to install any programming environment on the users' computers. The RaDMaX online web application is written in Python and developed within a Jupyter notebook implementing graphical widgets and interactive plots. RaDMaX online is free and open source and can be accessed on the internet at https://aboulle.github.io/RaDMaX-online/.


2018 ◽  
Vol 7 (3) ◽  
pp. 1415
Author(s):  
Vinayak Hegde ◽  
Lavanya V Rao ◽  
Shivali B S

Examinations are an indispensable part of a student’s life. In the conventional mechanism, the question paper generation is time-consuming work for the faculty members of the educational institution. Every educational institute mandatorily expects exam setters to follow its own typesetting format. We have designed the automated question paper setting software to be user-friendly so that, paper setters can overcome from the typographic problem. Presently in most of the educational institutions question papers are set manually. It is time-consuming work and there may be chances of repetition of the same questions. So, in order to make the question paper generation more convenient to use, the web application is developed using Java Enterprise Edition (JEE) that can be accessed from LAN/Intranet.The application comes with the Admin Module and Teachers Module. The Admin grants access to the users by registering them. The faculty can access the system once they are registered. The faculty can enter questions in the database daily as per their free time. In this way, the question pool can be generated. The questions are approved by the chairperson and substandard questions are discarded. The question paper is then generated by selected course experts. The Fisher-Yates Shuffling algorithm used to choose questions randomly from the pool of questions from the database. Text Mining Algorithm aids in duplicity removal from the paper.  The generated question paper will be in Word Format. In our application, we assure better security, removal of duplicity, cost-effectiveness, and human intervention avoidance. It can be used by small-scale and large-scale institutions.  


Sign in / Sign up

Export Citation Format

Share Document