scholarly journals Quantifying pigment cover to assess variation in animal colouration

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Andjin Siegenthaler ◽  
Debapriya Mondal ◽  
Chiara Benvenuto

Abstract The study of animal colouration addresses fundamental and applied aspects relevant to a wide range of fields, including behavioural ecology, environmental adaptation and visual ecology. Although a variety of methods are available to measure animal colours, only few focus on chromatophores (specialized cells containing pigments) and pigment migration. Here, we illustrate a freely available and user-friendly method to quantify pigment cover (PiC) with high precision and low effort using digital images, where the foreground (i.e. pigments in chromatophores) can be detected and separated from the background. Images of the brown shrimp, Crangon crangon, were used to compare PiC with the traditional Chromatophore Index (CI). Results indicate that PiC outcompetes CI for pigment detection and transparency measures in terms of speed, accuracy and precision. The proposed methodology provides researchers with a useful tool to answer essential physiological, behavioural and evolutionary questions on animal colouration in a wide range of species.

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Sara Di Salvo ◽  
Eleonora Braschi ◽  
Martina Casalini ◽  
Sara Marchionni ◽  
Teresa Adani ◽  
...  

An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i) the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece), (ii) the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano’s (Iceland) 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii) the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences.


2014 ◽  
Vol 357 ◽  
pp. 217-243
Author(s):  
R.H. Biswas

Luminescence, mainly thermoluminescence (TL) and optically stimulated luminescence (OSL), has been researched for more than five decades towards its application to earth and planetary sciences. Luminescence production mechanism has been understood through several theoretical studies, like analytical kinetic theory, numerical models along with the experimental results. Instrument development has progressed with aim from user friendly TL/OSL reader dedicated for dating to challenging reader forin-situMartian sediment dating. Since the development of optical dating in 1985, the technique revolutionised the research in earth sciences. And since then to recent, many methodologies have been developed and some are in developing stage using different signals, like, single grain OSL, red TL, time resolved OSL, thermally transferred OSL (TT-OSL), post infrared-infrared stimulated luminescence (pIR-IRSL), violet light stimulated luminescence (VSL), infrared radioluminescence (IRRL), etc. with an objective to improve the accuracy and precision and to extend the dating range. The wide range of application in different environment, e.g. aeolian, fluvial, marine, glacier, soil, volcanic materials, heated materials, shocked materials, meteorites, etc. have made the technique successful to understand the quaternary history of earth and planetary information like terrestrial and cosmic ray exposure ages of meteorite, meteoroid orbit, thermal metamorphism history of meteorite etc. The aim of this present paper is to discuss some landmarks and recent trends in the development and application in these areas. Contents of the Paper


2020 ◽  
Vol 499 (3) ◽  
pp. 4418-4431 ◽  
Author(s):  
Sujatha Ramakrishnan ◽  
Aseem Paranjape

ABSTRACT We use the Separate Universe technique to calibrate the dependence of linear and quadratic halo bias b1 and b2 on the local cosmic web environment of dark matter haloes. We do this by measuring the response of halo abundances at fixed mass and cosmic web tidal anisotropy α to an infinite wavelength initial perturbation. We augment our measurements with an analytical framework developed in earlier work that exploits the near-lognormal shape of the distribution of α and results in very high precision calibrations. We present convenient fitting functions for the dependence of b1 and b2 on α over a wide range of halo mass for redshifts 0 ≤ z ≤ 1. Our calibration of b2(α) is the first demonstration to date of the dependence of non-linear bias on the local web environment. Motivated by previous results that showed that α is the primary indicator of halo assembly bias for a number of halo properties beyond halo mass, we then extend our analytical framework to accommodate the dependence of b1 and b2 on any such secondary property that has, or can be monotonically transformed to have, a Gaussian distribution. We demonstrate this technique for the specific case of halo concentration, finding good agreement with previous results. Our calibrations will be useful for a variety of halo model analyses focusing on galaxy assembly bias, as well as analytical forecasts of the potential for using α as a segregating variable in multitracer analyses.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 460
Author(s):  
Yun-Hsuan Chen ◽  
Mohamad Sawan

We review in this paper the wearable-based technologies intended for real-time monitoring of stroke-related physiological parameters. These measurements are undertaken to prevent death and disability due to stroke. We compare the various characteristics, such as weight, accessibility, frequency of use, data continuity, and response time of these wearables. It was found that the most user-friendly wearables can have limitations in reporting high-precision prediction outcomes. Therefore, we report also the trend of integrating these wearables into the internet of things (IoT) and combining electronic health records (EHRs) and machine learning (ML) algorithms to establish a stroke risk prediction system. Due to different characteristics, such as accessibility, time, and spatial resolution of various wearable-based technologies, strategies of applying different types of wearables to maximize the efficacy of stroke risk prediction are also reported. In addition, based on the various applications of multimodal electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) on stroke patients, the perspective of using this technique to improve the prediction performance is elaborated. Expected prediction has to be dynamically delivered with high-precision outcomes. There is a need for stroke risk stratification and management to reduce the resulting social and economic burden.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2008 ◽  
Vol 65 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Tom L. Catchpole ◽  
Andrew S. Revill ◽  
James Innes ◽  
Sean Pascoe

Abstract Catchpole, T. L., Revill, A. S., Innes, J., and Pascoe, S. 2008. Evaluating the efficacy of technical measures: a case study of selection device legislation in the UK Crangon crangon (brown shrimp) fishery. – ICES Journal of Marine Science, 65: 267–275. Bycatch reduction devices are being introduced into a wide range of fisheries, with shrimp and prawn fisheries particularly targeted owing to the heavy discarding common in these fisheries. Although studies are often undertaken to estimate the impact of a technical measure on the fishery before implementation, rarely have the impacts been assessed ex post. Here, the efficacy of the UK legislation pertaining to the use of sievenets in the North Sea Crangon crangon fishery is assessed. Three impacts were evaluated: on fisher behaviour (social), on the level of bycatch (biological), and on vessel profitability (economic). An apparent high level of compliance by skippers was identified despite a low level of enforcement. The estimated reduction in fleet productivity following the introduction of the legislation was 14%, equalling the mean loss of Crangon landings when using sievenets calculated from catch comparison trawls. Sievenets did reduce the unnecessary capture of unwanted marine organisms, but were least effective at reducing 0-group plaice, which make up the largest component of the bycatch. Clearly the legislation has had an effect in the desired direction, but it does not address sufficiently the bycatch issue in the Crangon fishery.


Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 449-474 ◽  
Author(s):  
Sturt W Manning ◽  
Bernd Kromer

The debate over the dating of the Santorini (Thera) volcanic eruption has seen sustained efforts to criticize or challenge the radiocarbon dating of this time horizon. We consider some of the relevant areas of possible movement in the14C dating—and, in particular, any plausible mechanisms to support as late (most recent) a date as possible. First, we report and analyze data investigating the scale of apparent possible14C offsets (growing season related) in the Aegean-Anatolia-east Mediterranean region (excluding the southern Levant and especially pre-modern, pre-dam Egypt, which is a distinct case), and find no evidence for more than very small possible offsets from several cases. This topic is thus not an explanation for current differences in dating in the Aegean and at best provides only a few years of latitude. Second, we consider some aspects of the accuracy and precision of14C dating with respect to the Santorini case. While the existing data appear robust, we nonetheless speculate that examination of the frequency distribution of the14C data on short-lived samples from the volcanic destruction level at Akrotiri on Santorini (Thera) may indicate that the average value of the overall data sets is not necessarily the most appropriate14C age to use for dating this time horizon. We note the recent paper of Soter (2011), which suggests that in such a volcanic context some (small) age increment may be possible from diffuse CO2emissions (the effect is hypothetical at this stage and hasnotbeen observed in the field), and that "if short-lived samples from the same stratigraphic horizon yield a wide range of14C ages, the lower values may be the least altered by old CO2." In this context, it might be argued that a substantive “low” grouping of14C ages observable within the overall14C data sets on short-lived samples from the Thera volcanic destruction level centered about 3326–3328 BP is perhaps more representative of the contemporary atmospheric14C age (without any volcanic CO2contamination). This is a subjective argument (since, in statistical terms, the existing studies using the weighted average remain valid) that looks to support as late a date as reasonable from the14C data. The impact of employing this revised14C age is discussed. In general, a late 17th century BC date range is found (to remain) to be most likelyeven ifsuch a late-dating strategy is followed—a late 17th century BC date range is thus a robust finding from the14C evidence even allowing for various possible variation factors. However, the possibility of a mid-16th century BC date (within ∼1593–1530 cal BC) is increased when compared against previous analyses if the Santorini data are considered in isolation.


2021 ◽  
Author(s):  
Dongjin Xie ◽  
Qiuyi Luo ◽  
Shen Zhou ◽  
Mei Zu ◽  
Haifeng Cheng

Inkjet printing of functional material has shown a wide range of application in advertzing, OLED display, printed electronics and other specialized utilities that require high-precision, mask-free, direct-writing deposition technique. Nevertheless,...


2012 ◽  
Vol 522 ◽  
pp. 823-827
Author(s):  
Jian Jiang Fang ◽  
Wen Jun Qi

The gear drive is the wide range of applications and is particularly important as a form of mechanical transmission, but the design process requires large amounts of data access and computation. In the paper, computer integrated technology and object-oriented technology is used to research and develop the intelligent design of Straight gear reducer system with user-friendly interactive platform, easy to use, high design efficiency and reliable data.


Sign in / Sign up

Export Citation Format

Share Document