Comparative floral development reveals novel aspects of structure and diversity of flowers in Cannabaceae

2020 ◽  
Vol 193 (1) ◽  
pp. 64-83 ◽  
Author(s):  
Flávia M Leme ◽  
Jürg Schönenberger ◽  
Yannick M Staedler ◽  
Simone P Teixeira

Abstract Species of Cannabaceae are wind pollinated, have inconspicuous and reduced flowers that are pistillate, staminate and apparently perfect on the same individual or on different individuals, with a single-whorled perianth and a pseudomonomerous gynoecium. Our objective is to understand the developmental processes that lead to such a reduced flower morphology and polygamy in Cannabis sativa, Celtis iguanaea and Trema micrantha. Floral buds and flowers were processed for surface, histological examinations and 3D reconstructions of vasculature. The single-whorled perianth is interpreted as a calyx because the organs are robust, have a broad base, an acute apex and quincuncial aestivation and are opposite the stamens. Petals are absent from inception. The dicliny is established at different development stages: stamens or carpels are absent from inception (Cannabis sativa), initiated and aborted during early (Trema micrantha, before sporo/gametogenesis) or late (Celtis iguanaea, after sporo/gametogenesis) development. Furthermore, in all species studied the carpels are congenitally united and the pseudomonomerous nature of the gynoecium is confirmed. Glandular trichomes are distributed on the bracts, sepals, anther connective and receptacle. Special floral features shared by species of Cannabaceae include precocious ovule development and sepals that are each vascularized by one bundle. The reduced flowers of Cannabaceae are the result of the absence from inception and/or abortion of organs and even of a whole whorl at different developmental stages, which were probably selected in response to pressures exerted by the similar pollination mechanism.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shivraj Braich ◽  
Rebecca C. Baillie ◽  
Larry S. Jewell ◽  
German C. Spangenberg ◽  
Noel O. I. Cogan

Abstract Cannabinoids are the main medicinal compounds of interest in the plant Cannabis sativa, that are primarily synthesised in the glandular trichomes; found on female floral buds. The content, composition and yield of secondary metabolites (cannabinoids and terpenoids) is influenced by the plant’s genetics and environment. Some initial gene expression experiments have been performed from strains of this plant species that contrasted in cannabinoid production, however the present knowledge about detailed trichome transcriptomics in this species is limited. An extensive transcriptome atlas was generated by RNA sequencing using root, shoot, flower and trichome tissues from a female plant strain (Cannbio-2) and was enhanced with the addition of vegetative and reproductive tissues from a male cannabis plant. Differential gene expression analysis identified genes preferentially expressed in different tissues. Detailed trichomics was performed from extractions specifically from glandular trichomes as well as female floral tissues at varying developmental stages, to identify stage-specific differentially expressed genes. Candidate genes involved in terpene and cannabinoid synthesis were identified and the majority were found to have an abundant expression in trichomes. The comprehensive transcriptome is a significant resource in cannabis for further research of functional genomics to improve the yield of specialised metabolites with high pharmacological value.


1981 ◽  
Vol 29 (4) ◽  
pp. 385 ◽  
Author(s):  
MS Buttrose ◽  
WJR Grant ◽  
M Sedgley

Floral buds of Acacia pycnantha were produced in every month of the year on new shoot growth. The buds produced between November and May developed through to flowering but those produced between June and October aborted at an early stage. Differences in the rate of floral development caused buds produced several months apart to flower in the same month in late winter. Developmental stages from newly produced flower heads to anthesis were studied by light microscopy. Pollen development preceded ovule development and the 16-celled polyads were formed 1 month prior to flowering and before development of the embryo sac.


2015 ◽  
Vol 33 (4) ◽  
pp. 453-458 ◽  
Author(s):  
Tania P Silva ◽  
Fernando L Finger

ABSTRACT: This work describes ethylene and 1-methylcyclopropene (1-MCP) action on post-harvest shelf life of four development stages of nasturtium flowers. To reach this goal, we carried out three experiments. In the first and second experiments, we studied five ethylene (0; 0.1; 1; 10; 100 and 1000 μL/L) and three 1-MCP concentrations (0.25; 0.5 and 0.75 μL/L), respectively. In the third experiment, 1-MCP was followed by combined with ethylene (only 1-MCP; only ethylene; and 24 hours of exposure to 0.75 μL/L 1-MCP followed by 24 hours of exposure to 100 μL/L ethylene). All experiments had two control treatments, one keeping non-exposed flowers inside and another outside exposure chambers. Experiments were set in factorial design, in complete blocks at random, with four 10-flower replications each. Flower senescence was determined by a pre-established visual scale and by observing floral bud development. Ethylene dose above 10 μL/L induced flower wilting and premature senescence from the second floral development stage. Furthermore, higher concentrations of exogenous ethylene promoted irregular flower opening and/or morphological abnormalities in opened flowers. 1-MCP effectively extended post-harvest longevity of nasturtium flowers, independent of the concentration and even in the presence of exogenous ethylene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Filippo Maggi

AbstractHemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC–MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.


2018 ◽  
Vol 66 (2) ◽  
pp. 161 ◽  
Author(s):  
Elaine Cotrim Costa ◽  
Renê Gonçalves da Silva Carneiro ◽  
Juliana Santos Silva ◽  
Rosy Mary dos Santos Isaias

Analyses of gall biology and development allow determination of morphogenesis events in host-plant organs that are altered by galling insects. Currently, we assume that there is a correlation between Lopesia sp. instars and the alterations in gall tissues on Mimosa gemmulata that generate the gall shape. The development of Lopesia sp. (three larval instars, pupae and adult) correlates positively with gall growth, especially on the anticlinal axis. First-instar larvae are found in galls at the stage of induction, Instar 2 in galls at early growth and development, Instar 3 in galls at late growth and development, pupae in galls at maturation, and the adult emerges from senescent galls. At induction, the larva stimulates cell differentiation in pinnula and pinna-rachis tissues on M. gemmulata. At early growth and development stages, cell division and expansion are increased, and non-glandular trichomes assist gall closing. Homogenous parenchyma and neoformed vascular bundles characterise late growth and development. At maturation, tissues are compartmentalised and cells achieve major expansion through elongation. At senescence, galls open by the falling of trichomes, and mechanical and nutritive cells have thickened walls. The neoformed nutritive tissue nurtures the developing Lopesia sp., whose feeding behaviour influences the direction of cell elongation, predominantly periclinal, determinant for gall bivalve shape.


2008 ◽  
Vol 3 (12) ◽  
pp. 1934578X0800301 ◽  
Author(s):  
Anna Rita Bilia ◽  
Guido Flamini ◽  
Fabrizio Morgenni ◽  
Benedetta Isacchi ◽  
Franco FrancescoVincieri

Artemisia annua L. (Asteraceae) still represents the only source of artemisinin, considered as one of the most important drugs for the treatment of malaria and which, more recently, has been shown to be effective against numerous types of tumors. The foliage and inflorescence of A. annua also yield an essential oil upon hydrodistillation. This oil has been evaluated at different development stages (pre-flowering and flowering) by GC/MS. The volatile oil from plants at full blooming showed numerous constituents, with germacrene D (21.2%), camphor (17.6%), β-farnesene (10.2%), β-caryophyllene (9%), and bicyclogermacrene (4.2%) among the main ones. Aromatic waters, after extraction with n-hexane, showed the presence, among others, of camphor (27.7%), 1,8-cineole (14%), artemisia ketone (10.1%), α-terpineol (6.1%), trans-pinocarveol (5.4%), and artemisia alcohol (2%). From plants at the pre-flowering stage, aromatic waters were obtained with camphor (30.7%), 1,8-cineole (12.8%), artemisia alcohol (11.4%), artemisia ketone (9.5%), alpha-terpineol (5.8%), and trans-pinocarveol (3.0%) as the main constituents. The qualitative and quantitative profiles of the two aromatic waters were similar. These results permitted the conclusion to be made that A. annua could be harvested a long time before the onset of flowering to obtain higher yields of artemisinin or could be allowed to attain maturity to obtain valuable yields of volatiles.


2010 ◽  
Vol 5 (2) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Majid Azizi ◽  
Remigius Chizzola ◽  
Askar Ghani ◽  
Fatemeh Oroojalian

Four Achillea species, A. millefolium, A. nobilis, A. eriophora and A. biebersteinii, were grown in small field plots in Iran and harvested at four developmental stages: vegetative, at the appearance of the first flower heads, at full flowering, and at late flowering. The composition of the main volatile compounds in dichloromethane extracts and the essential oil obtained by microdistillation was established by GC/MS and GC. 1,8-Cineole (27-41%) was the main compound in the oils from A. millefolium and A. biebersteinii. These two species reached the highest amount of volatile compounds at the full blooming stage. α-Thujone was the main compound in A. nobilis oil (25-64%). Fully blooming plants of this species also had a high proportion of artemisia ketone (up to 40%) in the oil. The main oil compounds of A. eriophora were camphor (about 35%) and 1,8-cineol (about 30%). This species produces only a small number of flower heads and the composition of the essential oil did not change during development.


1977 ◽  
Vol 55 (9) ◽  
pp. 1106-1120 ◽  
Author(s):  
V. Singh ◽  
R. Sattler

The primordia of the floral appendages are initiated in an acropetal succession. Members of the same whorl appear nearly simultaneously. The gynoecial whorl and the two staminal whorls are trimerous, whereas the perianth consists only of two anteriolateral tepals. However, the posterior (adaxial) tepal may be present as an extremely reduced buttress whose growth becomes arrested immediately after its inception. If this somewhat questionable tepal rudiment is included we have a perfectly trimerous and tetracyclic flower with alternation of successive whorls. Subtending bracts of the flowers are completely missing in all developmental stages. While the tepal primordia are dorsiventral from their inception, the stamen and pistil (carpel) primordia originate as hemispherical mounds which become dorsiventral in subsequent stages of development. Each pistil (carpel) primordium becomes horseshoe shaped. As the margins grow up and contact they fuse postgenitally. No cross zone is formed. Placentation is submarginal. In A. natans eight ovules are formed and in A. undulatus only two arise; all ovules are bitegmic. The floral apices have a two-layered tunica up to the stage of pistil formation. The inception of all floral appendages (including the ovules) occurs by periclinal cell division in the second tunica layer. The third layer (corpus) may contribute to the formation of the stamens and pistils. Each appendage primordium receives only one procambial strand which begins to differentiate after the inception of the primordium. The questionable rudimentary tepal buttress lacks a procambial strand. Apparently it does not reach the developmental stage at which procambial induction occurs. From the point of view of floral development, the two species of Aponogeton differ drastically from members of the Alismatales studied so far. Among the Helobiae, the Aponogetonaceae appear to be most closely related to the Scheuchzeriaceae and the Juncaginaceae (Triglochinaceae).


1968 ◽  
Vol 46 (5) ◽  
pp. 720-722 ◽  
Author(s):  
Rolf Sattler

When floral buds are studied by serial sectioning, the obtained three-dimensional picture of the buds is a reconstruction which involves some theoretical elements. In contrast to this reconstructive method, the described technique permits the direct study of the three-dimensional developmental stages of flowers. Protoderm cells of floral apices and primordial appendages can be demonstrated.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Haiting Jing ◽  
Jing Liu ◽  
Hanzhu Liu ◽  
Hua Xin

Thymus quinquecostatus, with more medical value, is a kind of wild plants. In order to exploit and utilize this plant, we studied the species and locations of alkaloids in its leaves. In this paper, histochemical study of leaves at different developing stages was taken to localize the alkaloids. Meanwhile, the kinds and content of alkaloids in leaves were identified using GC-MS technique. It was found that there were two kinds of glandular trichomes, namely, peltate trichomes and capitate trichomes, on the surface of leaves, and their secretory cells could secrete alkaloids. Results showed that trichomes could secrete alkaloids as soon as the first pair of leaves formed, and there were altogether 18 kinds of alkaloids identified by GC-MS. Nearly all of these alkaloids of leaves at different developing stages were distinct from each other, except one, 3-methoxy-a-methyl-benzeneethanamine, persists at different developing stages with high concentration.


Sign in / Sign up

Export Citation Format

Share Document