scholarly journals The emerging role of iron in heart failure and vascular calcification in CKD

2020 ◽  
Author(s):  
Paola Ciceri ◽  
Mario Cozzolino

Abstract Iron deficiency is a frequent comorbidity of cardiovascular (CV) diseases and nearly 50% of patients with heart failure (HF) with or without anaemia have low levels of available iron. There is a strong association between anaemia and the increase in mortality and hospitalizations in patients with CV disease and HF. Moreover, anaemia and chronic kidney disease (CKD) often coexist in patients with HF, with anaemia increasing the risk of death in these subjects and with a further increased risk in CKD population. The evidence that the treatment of iron deficiency and the increase in haemoglobin are associated with a better prognosis in HF patients has elicited new interest in the utilization of iron in HF and CKD patients. One of the central players in CV disease is vascular calcification (VC), which has been recognized as a major independent risk factor for incident CV disease and overall mortality in chronic disease patients. In this review, we summarize the evidences generated by clinical trials aimed to study the effect of iron deficiency correction, the effect of iron-based phosphate binder in in vivo models of kidney failure and the effect of iron in in vitro models of VC, trying to give an overview of the present knowledge on iron effect and its mechanisms of action.

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1409 ◽  
Author(s):  
Sonia Simón Serrano ◽  
Alvar Grönberg ◽  
Lisa Longato ◽  
Krista Rombouts ◽  
Joseph Kuo ◽  
...  

Hepatic fibrosis can result as a pathological response to nonalcoholic steatohepatitis (NASH). Cirrhosis, the late stage of fibrosis, has been linked to poor survival and an increased risk of developing hepatocellular carcinoma, with limited treatment options available. Therefore, there is an unmet need for novel effective antifibrotic compounds. Cyclophilins are peptidyl-prolyl cis-trans isomerases that facilitate protein folding and conformational changes affecting the function of the targeted proteins. Due to their activity, cyclophilins have been presented as key factors in several stages of the fibrotic process. In this study, we investigated the antifibrotic effects of NV556, a novel potent sanglifehrin-based cyclophilin inhibitor, in vitro and in vivo. NV556 potential antifibrotic effect was evaluated in two well-established animal models of NASH, STAM, and methionine-choline-deficient (MCD) mice, as well as in an in vitro 3D human liver ECM culture of LX2 cells, a human hepatic stellate cell line. We demonstrate that NV556 decreased liver fibrosis in both STAM and MCD in vivo models and decreased collagen production in TGFβ1-activated hepatic stellate cells in vitro. Taken together, these results present NV556 as a potential candidate for the treatment of liver fibrosis.


2014 ◽  
Vol 2 (3) ◽  
pp. 189-198
Author(s):  
Ajay H. Bahl ◽  
Wanda Lee

Cathelicidin-related antimicrobial peptides are a family of polypeptides found in lysosomes of macrophages and polymorphonuclear leukocytes (PMNs). Some of these peptides can assume an alpha-helical conformation, others contain one or two disulfide bonds, still others are Pro- and Arg-rich, or Trp-rich. Higher levels of human cathelicidin antimicrobial protein (hCAP18), which are up-regulated by vitamin D, appear to significantly reduce the risk of death from infection in dialysis patients. Using in vitro and in vivo models of kidney infection, we demonstrate key antimicrobial and host immunomodulatory properties of cathelicidins. To directly assess the role of endogenous cathelicidin in the development of glomerulonephritis, WT and mCRAMP KO mice were provided with 5% DSS to induce glomerulonephritis. Some mice groups were administered with E. coli DNA I.P. Our findings showed that mCRAMP KO mice develop more severe glomerulonephritis. These data demonstrate key roles for cathelicidins in host defense against glomerulonephritis and the potential to inform the development of synthetic analogues to modulate specific host-pathogen interactions as novel antimicrobial therapeutics.


2021 ◽  
Author(s):  
Ula Štok ◽  
Saša Čučnik ◽  
Snežna Sodin-Šemrl ◽  
Polona Žigon

Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis, obstetric complications and the presence of antiphospholipid antibodies (aPL) that cause endothelial injury and thrombophilia. Extracellular vesicles are involved in endothelial and thrombotic pathologies and may therefore have an influence on the prothrombotic status of APS patients. Intercellular communication and connectivity are important mechanisms of interaction between healthy and pathologically altered cells. Despite well-characterized in vitro and in vivo models of APS pathology, the field of extracellular vesicles is still largely unexplored and could therefore provide an insight into the APS mechanism and possibly serve as a biomarker to identify patients at increased risk. The analysis of EVs poses a challenge due to the lack of standardized technology for their isolation and characterization. Recent findings in the field of EVs offer promising aspects that may explain their role in the pathogenesis of various diseases, including APS.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1278-1278
Author(s):  
Phu Tran ◽  
Montana Beeson ◽  
Michael Georgieff

Abstract Objectives Iron deficiency (ID) during neural development is associated with long-term neurocognitive dysfunction. In rodent models, the cognitive deficit is associated with reduced hippocampal brain-derived neurotrophic factor (Bdnf) expression in adulthood despite early iron treatment. Since a previous study suggested a role of epigenetic modifications at the Bdnf locus, we assessed whether an iron-dependent signaling pathway from ID → HIF1α → JARID1B (Fe-containing histone demethylase) → Bdnf is responsible for Bdnf suppression in iron-deficient neurons. The objective is to determine the effect of ID on the HIF1α/JARID1B/Bdnf pathway in vitro and in vivo. Methods A hippocampal neuronal cell line HT-22 (n = 3/group) was used to assess cellular changes following deferoxamine (10 μM) induced-ID. In parallel, timed pregnant Sprague-Dawley rats were fed a purified iron deficient diet (ID, 4 mg Fe/kg) from gestational day (G)2 to through postnatal day (P)7 to induce a similar degree of neuronal ID. At P7, nursing dams where switched to a purified-iron sufficient diet (IS, 200 mg Fe/kg). Control dams were fed IS diet. Hippocampi (n = 6/group) were collected from P15 ID and IS rats. Enrichment of HIF1α, JARID1B, USF1, histone H3 methylation at the Bdnf promoter in both models was determined using ChIP-qPCR. Results were analyzed using t-test for pairwise comparison and α ≤ 0.05. Results ID increased nuclear HIF1α in HT-22 cells (P = 0.03), suggesting less hydroxylated-HIF1α due to reduced Fe-dependent prolyl hydroxylase (PHD) activity. Increased nuclear HIF1α led to increased binding and transactivation at the VEGF (positive control, P = 0.03)) and JARID1B promoters (P = 0.04), which in turns reduced Bdnf expression in HT-22 cells (P = 0.02). Similar effects were observed in iron-deficient P15 hippocampus. Conclusions This is the first evidence that ID directly regulates long-term neural gene expression through the cellular PHD/HIF1α/JARID1B pathway to induce epigenetic modifications both in vitro and in vivo models. Funding Sources 1R01NS099178.


2019 ◽  
Vol 26 (32) ◽  
pp. 5982-6015 ◽  
Author(s):  
Maria-Ioanna Christodoulou ◽  
Job Tchoumtchoua ◽  
Alexios-Leandros Skaltsounis ◽  
Andreas Scorilas ◽  
Maria Halabalaki

Background: Accumulating experimental data supports the capacity of natural compounds to intervene in complicated molecular pathways underlying the pathogenesis of certain human morbidities. Among them, diabetes is now a world’s epidemic associated with increased risk of death; thus, the detection of novel anti-diabetic agents and/or adjuvants is of vital importance. Alkaloids represent a diverse group of natural products with a range of therapeutic properties; during the last 20 years, published research on their anti-diabetic capacity has been tremendously increased. Purpose: To discuss current concepts on the anti-diabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway. Methodology: Upon in-depth search in the SCOPUS and PUBMED databases, the literature on alkaloids with insulin secretion/sensitization properties was critically reviewed. Results: In-vitro and in-vivo evidence supports the effect of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine and neferine on insulin-signaling and related cascades in beta-cells, myocytes, adipocytes, hepatocytes and other cells. Associated receptors, kinases, hormones and cytokines, are affected in terms of gene transcription, protein expression, activity and/or phosphorylation. Pathophysiological processes associated with insulin resistance, beta-cell failure, oxidative stress and inflammation, as well as clinical phenotype are also influenced. Discussion: Growing evidence suggests the ability of specific alkaloids to intervene in the insulin-signal transduction pathway, reverse molecular defects resulting in insulin resistance and glucose intolerance and improve disease complications, in-vitro and in-vivo. Future indepth molecular studies are expected to elucidate their exact mechanism of action, while large clinical trials are urgently needed to assess their potential as anti-diabetic agents.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5863
Author(s):  
Kazuo Yamagata ◽  
Yukio Yamori

Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.


2021 ◽  
Vol 22 (9) ◽  
pp. 4689
Author(s):  
Ula Štok ◽  
Saša Čučnik ◽  
Snežna Sodin-Šemrl ◽  
Polona Žigon

Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thromboembolism, obstetric complications, and the presence of antiphospholipid antibodies (aPL). Extracellular vesicles (EVs) play a key role in intercellular communication and connectivity and are known to be involved in endothelial and vascular pathologies. Despite well-characterized in vitro and in vivo models of APS pathology, the field of EVs remains largely unexplored. This review recapitulates recent findings on the role of EVs in APS, focusing on their contribution to endothelial dysfunction. Several studies have found that APS patients with a history of thrombotic events have increased levels of EVs, particularly of endothelial origin. In obstetric APS, research on plasma levels of EVs is limited, but it appears that levels of EVs are increased. In general, there is evidence that EVs activate endothelial cells, exhibit proinflammatory and procoagulant effects, interact directly with cell receptors, and transfer biological material. Future studies on EVs in APS may provide new insights into APS pathology and reveal their potential as biomarkers to identify patients at increased risk.


2012 ◽  
Vol 44 (8) ◽  
pp. 443-454 ◽  
Author(s):  
Bo Lu ◽  
Hongjuan Yu ◽  
Maarten Zwartbol ◽  
Willem P. Ruifrok ◽  
Wiek H. van Gilst ◽  
...  

Heart failure (HF) is a complex disease involving multiple changes including cardiomyocyte hypertrophy (growth). Here we performed a set of screens in different HF and hypertrophy models to identify differentially expressed genes associated with HF and/or hypertrophy. Hypertensive Ren2 rats and animals with postmyocardial infarction (post-MI) HF were used as in vivo HF models, and neonatal rat cardiomyocytes treated with hypertrophy inducing hormones phenylephrine, endothelin-1, and isoproterenol were used as in vitro models. This combined approach revealed a robust set of genes that were differentially expressed both in vitro and in vivo. This included known genes like NPPA (ANP) and FHL1, but also novel genes not previously associated with hypertrophy/HF. Among these are PTGIS, AKIP1, and Dhrs7c, which could constitute interesting targets for further investigations. We also identified a number of in vivo specific genes and these appeared to be enriched for fibrosis, wounding, and stress responses. Therefore a number of novel genes within this in vivo specific list could be related to fibroblasts or other noncardiomyocytes present in the heart. We also observed strong differences between the two HF rat models. For example KCNE1 was strongly upregulated in Ren2, but not in post-MI HF rats, suggesting possible etiology-specific differences. Moreover, Gene Ontology analysis revealed that genes involved in fatty acid oxidation were specifically down regulated in the post-MI group only. Together these results show that combining multiple models, both in vivo and in vitro, can provide a robust set of hypertrophy/HF-associated genes. Moreover it provides insight in the differences between the different etiology models and neurohormonal effects.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Rajat Sethi ◽  
Rama Perepu ◽  
Carlos Garcia ◽  
David Dostal

Sex related differences have been noted in cardiovascular disease where females have a lower incidence of heart failure, and a higher rate of heart failure survival. On-the-other-hand, some studies have reported increased mortality in women compared with men. Recent data also suggest that women have an increased risk of death due to O 3 air pollution, which is in contrast to reports that short-term variations in gaseous pollutants are associated with an increase in hospitalization for cardiac disease that is not modified by gender. It has been speculated that because of the nature of the photochemical equilibrium of O 3 in the ambient environment and due to other confounding factors epidemiological investigations of the health effects of O 3 may be using O 3 as an exposure surrogate for other oxidants or co-pollutants, some of which may be interfering with response to O 3 . The present study in a controlled exposure protocol tested the hypothesis that female rats compared to male have decreased sensitivity to cardiac injury subsequent to O 3 exposure. Age matched male/female rats were exposed 8 hrs/day for 28 and 56 days to filtered air or 0.8 ppm O 3 . In order to assess the chronic effects to O 3 , in-vivo cardiac function was assessed, 24 hrs after termination of the O 3 exposure. Compared to female rats, LVDP values significantly decreased in O 3 exposed male rats. This enhanced attenuation of cardiac function in male animals was associated with increased myocardial TNF-alpha (TNF-α) levels and decreased myocardial activities of superoxidase dismutase (SOD). These novel findings suggest that decreased attenuation of cardiac function in O 3 exposed females compared to males exposed to similar conditions was associated with decreased inflammatory mediator production and decreased oxidative stress. Identifying the underlying factors for gender based variations in ozone response is very important to recognize at-risk groups who would benefit from preventive strategies. In addition identification of those at risk, their degree of sensitivity will assist with the cost-benefit analysis of “safe” exposure levels in the public health setting. The long-term goal of this study is in guiding regulatory policies for reduced environmental related health costs.


Author(s):  
Anique D ter Braake ◽  
Marc G Vervloet ◽  
Jeroen H F de Baaij ◽  
Joost G J Hoenderop

Abstract Vascular calcification is a prognostic marker for cardiovascular mortality in chronic kidney disease (CKD) patients. In these patients, magnesium balance is disturbed, mainly due to limited ultrafiltration of this mineral, changes in dietary intake and the use of diuretics. Observational studies in dialysis patients report that a higher blood magnesium concentration is associated with reduced risk to develop vascular calcification. Magnesium prevents osteogenic vascular smooth muscle cell transdifferentiation in in vitro and in vivo models. In addition, recent studies show that magnesium prevents calciprotein particle maturation, which may be the mechanism underlying the anti-calcification properties of magnesium. Magnesium is an essential protective factor in the calcification milieu, which helps to restore the mineral-buffering system that is overwhelmed by phosphate in CKD patients. The recognition that magnesium is a modifier of calciprotein particle maturation and mineralization of the extracellular matrix renders it a promising novel clinical tool to treat vascular calcification in CKD. Consequently, the optimal serum magnesium concentration for patients with CKD may be higher than in the general population.


Sign in / Sign up

Export Citation Format

Share Document