scholarly journals Seasonal Interactions, Habitat Quality, and Population Dynamics in Migratory Birds

The Condor ◽  
2007 ◽  
Vol 109 (3) ◽  
pp. 535-547 ◽  
Author(s):  
D. Ryan Norris ◽  
Peter P. Marra

AbstractAbstract. Historically, studies of habitat selection have focused on quantifying how current patterns of habitat occupancy influence condition and survival within a season. This approach, however, is overly simplistic, especially for migratory birds that spend different periods of the year in geographically distinct places. Habitat occupancy and the resulting condition of individual birds is likely to be affected by events in the previous season, and the consequences of habitat occupancy will influence individuals and populations in subsequent seasons. Thus, for migratory birds, variation in habitat quality (and quantity) needs to be understood in the context of how events interact throughout periods of the annual cycle. Seasonal interactions can occur at the individual level or population level. Individual-level interactions occur when events in one season produce nonlethal, residual effects that carry over to influence individuals the following season. Population-level interactions occur when a change in population size in one season influences per capita rates the following season. We review various methods for estimating seasonal interactions and highlight a number of examples in the literature. Using a variety of techniques, including intrinsic and extrinsic markers, the vast majority of studies to date have measured seasonal interactions at the individual level. Obtaining estimates of density and changes in per capita rates across multiple seasons to determine population-level interactions has been more challenging. Both types of seasonal interactions can influence population dynamics, but predicting their effects requires detailed knowledge of how populations are geographically connected (i.e., migratory connectivity). We recommend that researchers studying habitat occupancy and habitat selection consider how events in previous seasons influence events within a season.

2008 ◽  
Vol 11 (06) ◽  
pp. 901-926 ◽  
Author(s):  
JÜRGEN JOST ◽  
WEI LI

We study a complementarity game as a systematic tool for the investigation of the interplay between individual optimization and population effects and for the comparison of different strategy and learning schemes. The game randomly pairs players from opposite populations. It is symmetric at the individual level, but has many equilibria that are more or less favorable to the members of the two populations. Which of these equilibria is then attained is decided by the dynamics at the population level. Players play repeatedly, but in each round with a new opponent. They can learn from their previous encounters and translate this into their actions in the present round on the basis of strategic schemes. The schemes can be quite simple, or very elaborate. We can then break the symmetry in the game and give the members of the two populations access to different strategy spaces. Typically, simpler strategy types have an advantage because they tend to go more quickly toward a favorable equilibrium which, once reached, the other population is forced to accept. Also, populations with bolder individuals that may not fare so well at the level of individual performance may obtain an advantage toward ones with more timid players. By checking the effects of parameters such as the generation length or the mutation rate, we are able to compare the relative contributions of individual learning and evolutionary adaptations.


2017 ◽  
Author(s):  
Alex Mesoudi

AbstractHow do migration and acculturation (i.e. psychological or behavioral change resulting from migration) affect within- and between-group cultural variation? Here I answer this question by drawing analogies between genetic and cultural evolution. Population genetic models show that migration rapidly breaks down between-group genetic structure. In cultural evolution, however, migrants or their descendants can acculturate to local behaviors via social learning processes such as conformity, potentially preventing migration from eliminating between-group cultural variation. An analysis of the empirical literature on migration suggests that acculturation is common, with second and subsequent migrant generations shifting, sometimes substantially, towards the cultural values of the adopted society. Yet there is little understanding of the individual-level dynamics that underlie these population-level shifts. To explore this formally, I present models quantifying the effect of migration and acculturation on between-group cultural variation, for both neutral and costly cooperative traits. In the models, between-group cultural variation, measured using F statistics, is eliminated by migration and maintained by conformist acculturation. The extent of acculturation is determined by the strength of conformist bias and the number of demonstrators from whom individuals learn. Acculturation is countered by assortation, the tendency for individuals to preferentially interact with culturally-similar others. Unlike neutral traits, cooperative traits can additionally be maintained by payoff-biased social learning, but only in the presence of strong sanctioning institutions. Overall, the models show that surprisingly little conformist acculturation is required to maintain realistic amounts of between-group cultural diversity. While these models provide insight into the potential dynamics of acculturation and migration in cultural evolution, they also highlight the need for more empirical research into the individual-level learning biases that underlie migrant acculturation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Hernández-Orallo ◽  
Bao Sheng Loe ◽  
Lucy Cheke ◽  
Fernando Martínez-Plumed ◽  
Seán Ó hÉigeartaigh

AbstractSuccess in all sorts of situations is the most classical interpretation of general intelligence. Under limited resources, however, the capability of an agent must necessarily be limited too, and generality needs to be understood as comprehensive performance up to a level of difficulty. The degree of generality then refers to the way an agent’s capability is distributed as a function of task difficulty. This dissects the notion of general intelligence into two non-populational measures, generality and capability, which we apply to individuals and groups of humans, other animals and AI systems, on several cognitive and perceptual tests. Our results indicate that generality and capability can decouple at the individual level: very specialised agents can show high capability and vice versa. The metrics also decouple at the population level, and we rarely see diminishing returns in generality for those groups of high capability. We relate the individual measure of generality to traditional notions of general intelligence and cognitive efficiency in humans, collectives, non-human animals and machines. The choice of the difficulty function now plays a prominent role in this new conception of generality, which brings a quantitative tool for shedding light on long-standing questions about the evolution of general intelligence and the evaluation of progress in Artificial General Intelligence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Li ◽  
Hugh Barclay ◽  
Bernard Roitberg ◽  
Robert Lalonde

Compensatory growth has been observed in forests, and it also appears as a common phenomenon in biology. Though it sometimes takes different names, the essential meanings are the same, describing the accelerated growth of organisms when recovering from a period of unfavorable conditions such as tissue damage at the individual level and partial mortality at the population level. Diverse patterns of compensatory growth have been reported in the literature, ranging from under-, to compensation-induced-equality, and to over-compensation. In this review and synthesis, we provide examples of analogous compensatory growth from different fields, clarify different meanings of it, summarize its current understanding and modeling efforts, and argue that it is possible to develop a state-dependent model under the conceptual framework of compensatory growth, aimed at explaining and predicting diverse observations according to different disturbances and environmental conditions. When properly applied, compensatory growth can benefit different industries and human society in various forms.


2018 ◽  
Vol 115 (29) ◽  
pp. 7545-7550 ◽  
Author(s):  
Erin E. Gorsich ◽  
Rampal S. Etienne ◽  
Jan Medlock ◽  
Brianna R. Beechler ◽  
Johannie M. Spaan ◽  
...  

Coinfecting parasites and pathogens remain a leading challenge for global public health due to their consequences for individual-level infection risk and disease progression. However, a clear understanding of the population-level consequences of coinfection is lacking. Here, we constructed a model that includes three individual-level effects of coinfection: mortality, fecundity, and transmission. We used the model to investigate how these individual-level consequences of coinfection scale up to produce population-level infection patterns. To parameterize this model, we conducted a 4-y cohort study in African buffalo to estimate the individual-level effects of coinfection with two bacterial pathogens, bovine tuberculosis (bTB) and brucellosis, across a range of demographic and environmental contexts. At the individual level, our empirical results identified bTB as a risk factor for acquiring brucellosis, but we found no association between brucellosis and the risk of acquiring bTB. Both infections were associated with reductions in survival and neither infection was associated with reductions in fecundity. The model reproduced coinfection patterns in the data and predicted opposite impacts of coinfection at individual and population scales: Whereas bTB facilitated brucellosis infection at the individual level, our model predicted the presence of brucellosis to have a strong negative impact on bTB at the population level. In modeled populations where brucellosis was present, the endemic prevalence and basic reproduction number (R0) of bTB were lower than in populations without brucellosis. Therefore, these results provide a data-driven example of competition between coinfecting pathogens that occurs when one pathogen facilitates secondary infections at the individual level.


Author(s):  
Emma Rary ◽  
Sarah M. Anderson ◽  
Brandon D. Philbrick ◽  
Tanvi Suresh ◽  
Jasmine Burton

The health of individuals and communities is more interconnected than ever, and emergent technologies have the potential to improve public health monitoring at both the community and individual level. A systematic literature review of peer-reviewed and gray literature from 2000-present was conducted on the use of biosensors in sanitation infrastructure (such as toilets, sewage pipes and septic tanks) to assess individual and population health. 21 relevant papers were identified using PubMed, Embase, Global Health, CDC Stacks and NexisUni databases and a reflexive thematic analysis was conducted. Biosensors are being developed for a range of uses including monitoring illicit drug usage in communities, screening for viruses and diagnosing conditions such as diabetes. Most studies were nonrandomized, small-scale pilot or lab studies. Of the sanitation-related biosensors found in the literature, 11 gathered population-level data, seven provided real-time continuous data and 14 were noted to be more cost-effective than traditional surveillance methods. The most commonly discussed strength of these technologies was their ability to conduct rapid, on-site analysis. The findings demonstrate the potential of this emerging technology and the concept of Smart Sanitation to enhance health monitoring at the individual level (for diagnostics) as well as at the community level (for disease surveillance).


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 739 ◽  
Author(s):  
Elisa Frasnelli ◽  
Giorgio Vallortigara

Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum.


2004 ◽  
Vol 80 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Ian D Thompson

While animals may use many habitat types, relatively few are preferred and fewer yet are superior in quality (referring to individual fitness as the measure of quality). Historical reduction in habitat quality for some wildlife species has occurred such that we may now have limited reference to original superior-quality habitats. As time passes, managers may be unaware that superior habitats are slowly disappearing and that the slow but cumulative change is significant to a species at the population level. The perception of superior-quality habitat also changes with each successive generation of managers based on their experiences. This paper raises the concern that retrospective work may often be required to determine past forest habitats and associated animal populations to avoid the risk of falling into a trap of not recognizing ever-declining habitat quality through time and relegating animals to what is in fact much poorer quality habitat than those to which they are actually best adapted. Further, the relationship between relative abundance and habitat quality may often be uncertain owing to maladaptive habitat selection by animals, inappropriate survey timing or interannual population differences. While we have begun to appreciate aspects of habitat selection for many forest species, few data are yet available that relate selected habitats to fitness of individual animals. Hence, while we may have models to predict habitat use, considerable research remains to be done to be able to predict long-term sustainability of species in managed landscapes. Key words: habitat quality, forest management, sustainability, biodiversity


Behaviour ◽  
2015 ◽  
Vol 152 (10) ◽  
pp. 1291-1306 ◽  
Author(s):  
A.D. Kelley ◽  
M.M. Humphries ◽  
A.G. McAdam ◽  
Stan Boutin

Both juvenile and adult animals display stable behavioural differences (personality), but lifestyles and niches may change as animals mature, raising the question of whether personality changes across ontogeny. Here, we use a wild population of red squirrels to examine changes in activity and aggression from juvenile to yearling life stages. Personality may change at the individual level (individual stability), population level (mean level stability), and relative to other individuals (differential stability). We calculated all three types of stability, as well as the structural stability of the activity–aggression behavioural syndrome. Within individuals, both activity and aggression scores regressed towards the mean. Differential stability was maintained for activity, but not aggression. Structural stability was maintained; however, the activity–aggression correlation increased in squirrels that gained territories later in the season. These results suggest that personality undergoes some changes as animals mature, and that the ontogeny of personality can be linked to environmental changes.


Sign in / Sign up

Export Citation Format

Share Document