The importance of superior-quality wildlife habitats

2004 ◽  
Vol 80 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Ian D Thompson

While animals may use many habitat types, relatively few are preferred and fewer yet are superior in quality (referring to individual fitness as the measure of quality). Historical reduction in habitat quality for some wildlife species has occurred such that we may now have limited reference to original superior-quality habitats. As time passes, managers may be unaware that superior habitats are slowly disappearing and that the slow but cumulative change is significant to a species at the population level. The perception of superior-quality habitat also changes with each successive generation of managers based on their experiences. This paper raises the concern that retrospective work may often be required to determine past forest habitats and associated animal populations to avoid the risk of falling into a trap of not recognizing ever-declining habitat quality through time and relegating animals to what is in fact much poorer quality habitat than those to which they are actually best adapted. Further, the relationship between relative abundance and habitat quality may often be uncertain owing to maladaptive habitat selection by animals, inappropriate survey timing or interannual population differences. While we have begun to appreciate aspects of habitat selection for many forest species, few data are yet available that relate selected habitats to fitness of individual animals. Hence, while we may have models to predict habitat use, considerable research remains to be done to be able to predict long-term sustainability of species in managed landscapes. Key words: habitat quality, forest management, sustainability, biodiversity

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 853
Author(s):  
Marina de Oliveira Rodrigues Barbosa ◽  
Maria Eliza F. do Val de Paulo ◽  
Ana Leonor Abrahão Nencioni

Few data are available in the literature describing the long-term effects of envenoming in the perinatal period. In this study, the relationship between envenoming of lactating rats and possible behavioral changes in the mother and in her offspring were investigated. Lactating Wistar rats received a single dose of T. serrulatus crude venom on postnatal days 2 (V2), 10 (V10) or 16 (V16), and had their maternal behavior evaluated. The seizure threshold was evaluated in adulthood offspring. A decrease in maternal care during envenoming was observed in V2 and V10 groups. The retrieval behavior was absent in the V2 group, and a lower seizure threshold in the adult offspring of all groups was observed. During envenoming, mothers stayed away from their offspring for a relatively long time. Maternal deprivation during the early postnatal period is one of the most potent stressors for pups and could be responsible, at least in part, for the decrease in the convulsive threshold of the offspring since stress is pointed to as a risk factor for epileptogenesis. Furthermore, the scorpionic accident generates an intense immune response, and inflammation in neonates increases the susceptibility to seizures in adulthood. Therefore, maternal envenoming during lactation can have adverse effects on offspring in adulthood.


Author(s):  
Nicole K. Y. Tang ◽  
Esther F. Afolalu ◽  
Fatanah Ramlee

Pain and sleeplessness are two of the commonest reasons for primary care appointments. The prevalence of each problem alone is high, and to add to the complexity, pain and insomnia frequently co-occur, with pain interrupting sleep and pain being further aggravated following a poor night’s sleep. Sleep and pain management are increasingly recognized as important to public health. In particular, insomnia and chronic pain are long-term conditions that actively contribute to morbidity, disability, economic burden to society, and suffering to the individual and immediate family. This chapter examines the interrelationship between the two at the population level. Specifically, evidence from population-based studies regarding the co-occurrence and temporal link of pain and sleep is reviewed, with moderators and mediators of the relationship highlighted. Possible directions for future research and treatment development are also outlined.


2020 ◽  
Vol 7 (8) ◽  
pp. 200173
Author(s):  
Dana O. Morcillo ◽  
Ulrich K. Steiner ◽  
Kristine L. Grayson ◽  
Angelina V. Ruiz-Lambides ◽  
Raisa Hernández-Pacheco

Major disturbance events can have large impacts on the demography and dynamics of animal populations. Hurricanes are one example of an extreme climatic event, predicted to increase in frequency due to climate change, and thus expected to be a considerable threat to population viability. However, little is understood about the underlying demographic mechanisms shaping population response following these extreme disturbances. Here, we analyse 45 years of the most comprehensive free-ranging non-human primate demographic dataset to determine the effects of major hurricanes on the variability and maintenance of long-term population fitness. For this, we use individual-level data to build matrix population models and perform perturbation analyses. Despite reductions in population growth rate mediated through reduced fertility, our study reveals a demographic buffering during hurricane years. As long as survival does not decrease, our study shows that hurricanes do not result in detrimental effects at the population level, demonstrating the unbalanced contribution of survival and fertility to population fitness in long-lived animal populations.


Behaviour ◽  
1977 ◽  
Vol 60 (1-2) ◽  
pp. 1-26 ◽  
Author(s):  
Robert R. Phillips

AbstractChasmodes bosquianus is a bottom-dwelling, blenniid fish. The males of this species utilize and defend enclosed nest sites during the breeding season. This species was selected as an appropriate subject for a study of habitat selection and shelter choice among hole-nesting animals. Two experimental pools were prepared containing different arrangements of two types of objects. These objects were enclosures and open shelters. The former were designed to represent an idealized shelter of the type used for nesting purposes in the field. The latter, which were arranged in rows, were vertical rectangles representing topographical irregularities of the bottom. Placement of the objects resulted in four general types of space in the experimental pools: that adjacent to open shelters, that within enclosures, open space, and that next to the walls of the pool. The blennies utilized the space next to open shelters significantly more and open space significantly less than would be expected on the basis of randomly-oriented movement. In addition, the fish followed routes that passed near the objects, as opposed to crossing open space, as they moved about in the pools. There was a tendency to use enclosures more than could be accounted for by an explanation based on random movement. When the four general regions were compared to one another with respect to use by the fish, somewhat similar results were seen. Space adjacent to open shelters was used significantly more than was open space. Edges were also more heavily utilized than was open space. During short-term (one hour) observations, the fish were found to approach the enclosure (E2) at the junction of two paths more frequently than they did the enclosure (E1) located on a single path. According to one measure, they demonstrated a greater interest in E2 also. However, an explanation for this greater interest based solely on the number of times that the fish approached E2 seems reasonable. During long-term (three-day) observations, the fish were found to utilize enclosures on various paths more than they did an enclosure in open space. No preference among the enclosures on paths of differing complexity was seen.


2013 ◽  
Vol 24 (3) ◽  
pp. 263-271 ◽  
Author(s):  
MATTIA BRAMBILLA ◽  
CLAUDIO CELADA ◽  
MARCO GUSTIN

SummarySetting Favourable Reference Values (FRVs) can assist the definition of the conservation status of a species. FRVs may consider population, habitat, and range. FRVs can indicate a range of values for different parameters, which should allow the long-term persistence of a species/population. We propose a method for the definition of reference values for the habitat (FRV-H or HRV) of breeding bird species. HRV should cover habitat extent and quality, both required to ensure long-term persistence. Extent HRV should express a measure of suitable area, whereas quality HRV could be defined as the range of values for habitat variables known to affect habitat quality. To define an extent HRV, we built species distribution models (SDMs) and set extent HRV as the extent of potentially suitable habitat under a conservative approach. Quality HRV should refer to environmental determinants/correlates of occurrence and breeding success, and should be defined by the identification of the habitat factors affecting occurrence and reproduction. When habitat selection is adaptive, habitat suitability may approximate habitat quality, being correlated with breeding success. In that case, fine-scaled habitat/distribution models may be used to identify determinants/correlates of reproductive output, and such species-habitat relationships may help define quality HRV. We show examples using the Red-backed Shrike Lanius collurio as a model. The use of habitat selection models, which can be made spatially explicit generating distribution models, may assist the definition of both extension and quality HRVs. Species-habitat models can allow the individuation of factors and relative values affecting species occurrence/reproduction (quality HRV), and the definition of the spatial distribution and quantity of potentially suitable habitat (extent HRV). Our approach is one of the possible ones, aiming at finding a “suitable” trade-off between affordable data and scientific precision. HRVs should be used together with population and range FRVs to assess the status of a species/population.


The Condor ◽  
2007 ◽  
Vol 109 (3) ◽  
pp. 535-547 ◽  
Author(s):  
D. Ryan Norris ◽  
Peter P. Marra

AbstractAbstract. Historically, studies of habitat selection have focused on quantifying how current patterns of habitat occupancy influence condition and survival within a season. This approach, however, is overly simplistic, especially for migratory birds that spend different periods of the year in geographically distinct places. Habitat occupancy and the resulting condition of individual birds is likely to be affected by events in the previous season, and the consequences of habitat occupancy will influence individuals and populations in subsequent seasons. Thus, for migratory birds, variation in habitat quality (and quantity) needs to be understood in the context of how events interact throughout periods of the annual cycle. Seasonal interactions can occur at the individual level or population level. Individual-level interactions occur when events in one season produce nonlethal, residual effects that carry over to influence individuals the following season. Population-level interactions occur when a change in population size in one season influences per capita rates the following season. We review various methods for estimating seasonal interactions and highlight a number of examples in the literature. Using a variety of techniques, including intrinsic and extrinsic markers, the vast majority of studies to date have measured seasonal interactions at the individual level. Obtaining estimates of density and changes in per capita rates across multiple seasons to determine population-level interactions has been more challenging. Both types of seasonal interactions can influence population dynamics, but predicting their effects requires detailed knowledge of how populations are geographically connected (i.e., migratory connectivity). We recommend that researchers studying habitat occupancy and habitat selection consider how events in previous seasons influence events within a season.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura C. Gigliotti ◽  
Rob Slotow ◽  
Luke T. B. Hunter ◽  
Julien Fattebert ◽  
Craig Sholto-Douglas ◽  
...  

Abstract Variability in habitat selection can lead to differences in fitness; however limited research exists on how habitat selection of mid-ranking predators can influence population-level processes in multi-predator systems. For mid-ranking, or mesopredators, differences in habitat use might have strong demographic effects because mesopredators need to simultaneously avoid apex predators and acquire prey. We studied spatially-explicit survival of cheetahs (Acinonyx jubatus) in the Mun-Ya-Wana Conservancy, South Africa, to test hypotheses related to spatial influences of predation risk, prey availability, and vegetation complexity, on mesopredator survival. For each monitored cheetah, we estimated lion encounter risk, prey density, and vegetation complexity within their home range, on short-term (seasonal) and long-term (lifetime) scales and estimated survival based on these covariates. Survival was lowest for adult cheetahs and cubs in areas with high vegetation complexity on both seasonal and lifetime scales. Additionally, cub survival was negatively related to the long-term risk of encountering a lion. We suggest that complex habitats are only beneficial to mesopredators when they are able to effectively find and hunt prey, and show that spatial drivers of survival for mesopredators can vary temporally. Collectively, our research illustrates that individual variation in mesopredator habitat use can scale-up and have population-level effects.


2013 ◽  
Vol 5 (2) ◽  
pp. 319-330 ◽  
Author(s):  
M. Pelto ◽  
J. Kavanaugh ◽  
C. McNeil

Abstract. The annual surface mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier annual mass balance data sets in North America. Annual surface mass balance (Ba) measured on Taku Glacier averaged +0.40 m a−1 from 1946–1985, and −0.08 m a−1 from 1986–2011. The recent annual mass balance decline has resulted in the cessation of the long-term thickening of the glacier. Mean Ba on Lemon Creek Glacier has declined from −0.30 m a−1 for the 1953–1985 period to −0.60 m a−1 during the 1986–2011 period. The cumulative change in annual surface mass balance is −26.6 m water equivalent, a 29 m of ice thinning over the 55 yr. Snow-pit measurements spanning the accumulation zone, and probing transects above the transient snow line (TSL) on Taku Glacier, indicate a consistent surface mass balance gradient from year to year. Observations of the rate of TSL rise on Lemon Creek Glacier and Taku Glacier indicate a comparatively consistent migration rate of 3.8 to 4.1 m d−1. The relationship between TSL on Lemon Creek Glacier and Taku Glacier to other Juneau Icefield glaciers (Norris, Mendenhall, Herbert, and Eagle) is strong, with correlations exceeding 0.82 in all cases. doi:10.5065/D6NZ85N3


2021 ◽  
Author(s):  
Jared A. Grummer ◽  
Tom R. Booker ◽  
Remi Matthey-Doret ◽  
Pirmin Nietlisbach ◽  
Andréa T. Thomaz ◽  
...  

ABSTRACTPlant and animal populations are facing several novel risks such as human-mediated habitat fragmentation and climate change that threaten their long-term productivity and persistence. With the genetic health of many populations deteriorating due to climate change outpacing physiological adaptation, human interventions in the form of assisted gene flow (AGF) may provide genetic variation to adapt populations to predicted climate change scenarios and result in more robust and productive populations. We ran genetic simulations to mimic a variety of AGF scenarios and measured their outcomes on population-level fitness to answer the question: in which circumstances is it worthwhile to perform AGF? Based on the parameters we explored, AGF may be harmful in certain situations over the short term (e.g., the first ∼10-20 generations), due to outbreeding depression and introducing deleterious genetic variation. Moreover, under many parameter sets, the benefits of AGF were relatively weak or took many generations to accrue. In general, when the adaptive trait is controlled by many loci of small effect, the benefits of assisted gene flow take much longer to realize–potentially too long for most climate-related management decisions. We also show that when translocation effort is divided across several generations and outbreeding depression is strong, the recipient population experiences a smaller decrease in fitness as compared to moving all individuals in a single effort. Importantly, in most cases, we show that the genomic integrity of the recipient population remains relatively intact following AGF; the amount of genetic material from the donor population typically ends up constituting no more of the recipient population’s genome than the fraction introduced. Our results will be useful for conservation practitioners and silviculturists, for instance, aiming to intervene and adaptively manage so that populations maintain a robust genetic health and maintain productivity into the future given anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document