scholarly journals The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload

2021 ◽  
Author(s):  
Raquel F Videira ◽  
Anne-Marie C Koop ◽  
Lara Ottaviani ◽  
Ella M Poels ◽  
Jordy M M Kocken ◽  
...  

Abstract Aims Research on the pathophysiology of right ventricular (RV) failure has, in spite of the associated high mortality and morbidity, lagged behind compared to the left ventricle (LV). Previous work from our lab revealed that the embryonic basic helix-loop-helix transcription factor heart and neural crest derivatives expressed-2 (Hand2) is re-expressed in the adult heart and activates a ‘foetal gene programme’ contributing to pathological cardiac remodelling under conditions of LV pressure overload. As such, ablation of cardiac expression of Hand2 conferred protection to cardiac stress and abrogated the maladaptive effects that were observed upon increased expression levels. In this study, we aimed to understand the contribution of Hand2 to RV remodelling in response to pressure overload induced by pulmonary artery banding (PAB). Methods and results In this study, Hand2F/F and MCM- Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic- and MRI-derived haemodynamic parameters as well as molecular remodelling were assessed for all experimental groups and compared to sham-operated controls. Six weeks after PAB, levels of Hand2 expression increased in the control-banded animals but, as expected, remained absent in the knockout hearts. Despite the dramatic differences in Hand2 expression, pressure overload resulted in impaired cardiac function independently of the genotype. In fact, Hand2 depletion seems to sensitize the RV to pressure overload as these mice develop more hypertrophy and more severe cardiac dysfunction. Higher expression levels of HAND2 were also observed in RV samples of human hearts from patients with pulmonary hypertension. In turn, the LV of RV pressure-overloaded hearts was also dramatically affected as reflected by changes in shape, decreased LV mass, and impaired cardiac function. RNA-sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. Conclusion Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressu re overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodelling of the RV in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A M C Koop ◽  
R F Videira ◽  
L Ottaviani ◽  
E M Poels ◽  
K W Van De Kolk ◽  
...  

Abstract Introduction Heart and neural crest derivatives expressed-2 (Hand2) has been identified as an important embryonic basic helix-loop-helix-transcription factor, with different functions in the development of the first and second heart field, from which the left and right ventricle originate, respectively. Our previous work revealed that Hand2, under conditions of left ventricular (LV) pressure overload, is re-expressed in the adult heart and activates a “fetal gene” program contributing to pathological cardiac remodeling. Ablation of cardiac expression of Hand2 resulted in protection to cardiac stress and attenuated maladaptive remodeling. Purpose In this study, we aimed at unraveling the role of Hand2 during cardiac remodeling in response to right ventricular (RV) pressure overload induced by pulmonary artery banding (PAB). Methods Hand2F/F and MCM− Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic and MRI derived hemodynamic parameters, and molecular remodelling were assessed for experimental groups and compared to sham-operated controls (Fig. 1a). RNA sequencing and gene ontology enrichment analysis were performed to compare the dysregulated genes between the pressure overloaded RV of the control and Hand2 knockout mice. Results After six weeks of increased pressure load (Fig. 1b), levels of Hand2 increased in the control banded animals but, as expected, remained absent in the knockout hearts (Fig. 1c). In contrast to the what was previously observed for the pressure overloaded LV, in the pressure loaded RV, Hand2 depletion resulted in more severe remodelling and dysfunction as reflected by increased hypertrophic growth, increased RV end-diastolic and end-systolic volumes as well as decreased RV ejection fraction (Fig. 1d–g). In addition, RNA sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. These include components of the extracellular matrix structure, collagen assembly and organization and several types of collagens. Genes associated with inflammation response, adhesion and muscle organization were also affected in the RV of the Hand2 KO mice (Fig. 1h). Figure 1 Conclusion Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressure overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodelling of the RV, in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Gladka ◽  
A De Leeuw ◽  
A Kohela ◽  
B Molenaar ◽  
D Versteeg ◽  
...  

Abstract   Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remarkable progress in managing the progression of the disease, the development of effective therapies for heart failure (HF) remains challenging. Therefore, it is of great importance to understand the molecular mechanisms that maintain calcium level and contractility in homeostatic conditions. Here we identified a transcription factor ZEB2 that regulates the expression of numerous contractile and calcium-related genes. Zinc finger E-box-binding homeobox2 (ZEB2) is a transcription factor that plays a role during early fetal development and epithelial-to-mesenchymal transition (EMT); however, its function in the heart remains to be determined. Recently, we found that ZEB2 is upregulated in murine cardiomyocytes shortly after an ischemic event, but returns to baseline levels as the disease progresses. Gain- and loss-of-function genetic mouse models revealed the necessity and sufficiency of ZEB2 to maintain proper cardiac function after ischemic injury. We show that cardiomyocyte-specific ZEB2 overexpression (Zeb2 cTG) protected from ischemia-induced diastolic dysfunction and attenuated the structural remodeling of the heart. Moreover, RNA-sequencing of Zeb2 cTG hearts post-injury implicated ZEB2 in the regulation of numerous calcium-handling and contractile-related genes when compared to wildtype mice. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospholamban (PLN) at both serine-16 and threonine-17, implying enhanced activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2A), thereby augmenting contractility. Improved cardiac function in ZEB2-overexpressing hearts correlated with higher expression of several sarcomeric proteins like myosin-binding protein C3 (MYBPC3), desmin (DES) and myosin regulatory light chain 2 (MYL2) further contributing to the observed protective phenotype. Furthermore, we observed a decrease in the activity of Ca2+-depended calcineurin/NFAT signaling, which is the main driver of pathological cardiac remodeling. Conversely to Zeb2 cTg mice, loss of ZEB2 from cardiomyocytes perturbed the expression of calcium- and contractile-related proteins and increased the activity of calcineurin/NFAT pathway, exacerbating cardiac dysfunction. Together, we show that ZEB2 is a central regulator of contractile and calcium-handling components, consequently mediating contractility in the mammalian heart. Further mechanistic understanding of the role of ZEB2 in the regulation of calcium homeostasis in cardiomyocytes is a critical step towards the development of improved therapies for various forms of heart failure. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): DR. E. Dekker from Dutch Heart Foundation


Author(s):  
Kendrick Lee ◽  
Steven R. Laviolette ◽  
Daniel B. Hardy

Abstract Background Cannabis use in pregnancy leads to fetal growth restriction (FGR), but the long-term effects on cardiac function in the offspring are unknown, despite the fact that fetal growth deficits are associated with an increased risk of developing postnatal cardiovascular disease. We hypothesize that maternal exposure to Δ9-tetrahydrocannabinol (Δ9-THC) during pregnancy will impair fetal development, leading to cardiac dysfunction in the offspring. Methods Pregnant Wistar rats were randomly selected and administered 3 mg/kg of Δ9-THC or saline as a vehicle daily via intraperitoneal injection from gestational days 6 to 22, followed by echocardiogram analysis of cardiac function on offspring at postnatal days 1 and 21. Heart tissue was harvested from the offspring at 3 weeks for molecular analysis of cardiac remodelling. Results Exposure to Δ9-THC during pregnancy led to FGR with a significant decrease in heart-to-body weight ratios at birth. By 3 weeks, pups exhibited catch-up growth associated with significantly greater left ventricle anterior wall thickness with a decrease in cardiac output. Moreover, these Δ9-THC-exposed offsprings exhibited increased expression of collagen I and III, decreased matrix metallopeptidase-2 expression, and increased inactivation of glycogen synthase kinase-3β, all associated with cardiac remodelling. Conclusions Collectively, these data suggest that Δ9-THC-exposed FGR offspring undergo postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function early in life. Impact To date, the long-term effects of perinatal Δ9-THC (the main psychoactive component) exposure on the cardiac function in the offspring remain unknown. We demonstrated, for the first time, that exposure to Δ9-THC alone during rat pregnancy results in significantly smaller hearts relative to body weight. These Δ9-THC-exposed offsprings exhibited postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function. Given the increased popularity of cannabis use in pregnancy along with rising Δ9-THC concentrations, this study, for the first time, identifies the risk of perinatal Δ9-THC exposure on early postnatal cardiovascular health.


2009 ◽  
Vol 297 (2) ◽  
pp. H576-H582 ◽  
Author(s):  
Qibin Jiao ◽  
Yunzhe Bai ◽  
Toru Akaike ◽  
Hiroshi Takeshima ◽  
Yoshihiro Ishikawa ◽  
...  

Sarcalumenin (SAR), a Ca2+-binding protein located in the longitudinal sarcoplasmic reticulum (SR), regulates Ca2+ reuptake into the SR by interacting with cardiac sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a). We have previously demonstrated that SAR deficiency induced progressive heart failure in response to pressure overload, despite mild cardiac dysfunction in sham-operated SAR knockout (SARKO) mice ( 26 ). Since responses to physiological stresses often differ from those to pathological stresses, we examined the effects of endurance exercise on cardiac function in SARKO mice. Wild-type (WT) and SARKO mice were subjected to endurance treadmill exercise training (∼65% of maximal exercise ability for 60 min/day) for 12 wk. After exercise training, maximal exercise ability was significantly increased by 5% in WT mice ( n = 6), whereas it was significantly decreased by 37% in SARKO mice ( n = 5). Cardiac function assessed by echocardiographic examination was significantly decreased in accordance with upregulation of biomarkers of cardiac stress in SARKO mice after training. After training, expression levels of SERCA2a protein were significantly downregulated by 30% in SARKO hearts, whereas they were significantly upregulated by 59% in WT hearts. Consequently, SERCA2 activity was significantly decreased in SARKO hearts after training. Furthermore, the expression levels of other Ca2+-handling proteins, including phospholamban, ryanodine receptor 2, calsequestrin 2, and sodium/calcium exchanger 1, were significantly decreased in SARKO hearts after training. These results indicate that SAR plays a critical role in maintaining cardiac function under physiological stresses, such as endurance exercise, by regulating Ca2+ transport activity into the SR. SAR may be a primary target for exercise-related adaptation of the Ca2+ storage system in the SR to preserve cardiac function.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ling-Yan Yuan ◽  
Pei-Zhao Du ◽  
Min-Min Wei ◽  
Qi Zhang ◽  
Le Lu ◽  
...  

Background. Aerobic exercise has been proven to have a positive effect on cardiac function after hypertension; however, the mechanism is not entirely clarified. Skeletal muscle mass and microcirculation are closely associated with blood pressure and cardiac function. Objective. This study was designed to investigate the effects of aerobic exercise on the skeletal muscle capillary and muscle mass, to explore the possible mechanisms involved in exercise-induced mitigation of cardiac dysfunction in pressure overload mice. Methods. In this study, 60 BALB/C mice aged 8 weeks were randomly divided into 3 groups: control (CON), TAC, and TAC plus exercise (TAE) group and utilized transverse aortic constriction (TAC) to establish hypertensive model; meanwhile, treadmill training is used for aerobic exercise. After 5 days of recovery, mice in the TAE group were subjected to 10-week aerobic exercise. Carotid pressure and cardiac function were examined before mice were executed by Millar catheter and ultrasound, respectively. Muscle mass of gastrocnemius was weighed; cross-sectional area and the number of capillaries of gastrocnemius were detected by HE and immunohistochemistry, respectively. The mRNA and protein levels of VEGF in skeletal muscle were determined by RT-PCR and western blot, respectively. Results. We found that ① 10-week aerobic exercise counteracted hypertension and attenuated cardiac dysfunction in TAC-induced hypertensive mice; ② TAC decreased muscle mass of gastrocnemius and resulted in muscle atrophy, while 10-week aerobic exercise could reserve transverse aortic constriction-induced the decline of muscle mass and muscle atrophy; and ③ TAC reduced the number of capillaries and the protein level of VEGF in gastrocnemius, whereas 10-week aerobic exercise augmented the number of capillaries, the mRNA and protein levels of VEGF in mice were subjected to TAC surgery. Conclusions. This study indicates that 10-week aerobic exercise might fulfill its blood pressure-lowering effect via improving skeletal muscle microcirculation and increasing muscle mass.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Shohei Ikeda ◽  
Kimio Satoh ◽  
Nobuhiro Kikuchi ◽  
Satoshi Miyata ◽  
Kota Suzuki ◽  
...  

Rationale: Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure-overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood. Objective: We aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure-overload. Methods and Results: To induce pressure-overload to respective ventricles, we performed pulmonary artery constriction (PAC) or transverse aortic constriction (TAC) in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly up-regulated in the RV with PAC compared with the LV with TAC. Then, we examined the responses of both ventricles to chronic pressure-overload in vivo. We demonstrated that compared with TAC, PAC caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform) and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure-overload. Additionally, mechanical stretch of RV cardiomyocytes from rats immediately up-regulated ROCK2 expression (not ROCK1), suggesting the specific importance of ROCK2 in stretch-induced responses of RV tissues. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase (DN-RhoK) showed resistance to pressure-overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, DN-RhoK mice showed a significantly improved long-term survival in both PAC and TAC as compared with littermate controls. Conclusions: These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans.


2017 ◽  
Vol 113 (6) ◽  
pp. 633-643 ◽  
Author(s):  
Jihe Li ◽  
Keyvan Yousefi ◽  
Wen Ding ◽  
Jayanti Singh ◽  
Lina A. Shehadeh

Aims Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. Methods and results In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. Conclusion Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Paolillo

Abstract Introduction Pressure overload-induced cardiac hypertrophy is associated with increased reactive oxygen species (ROS), inducing DNA damage and activating the protein kinase Ataxia-Telangiectasia Mutated (ATM). Recently, ATM has been also involved in the regulation of several metabolic processes, but whether and how it affects cardiac metabolism is still poorly understood. Purpose We hypothesized that ATM might play crucial roles in the maintenance of cardiomyocyte metabolic homeostasis and in the development of cardiac dysfunction in response to pressure overload. Methods Atm+/+ and Atm homozygous mutated mice (Atm−/−) underwent transverse aortic constriction (TAC) or sham operation (sham). After one week (1w), sham and TAC mice were anesthetized, cardiac function and morphometry were analyzed, and gene expression reprogramming, cardiac histology, mitochondrial morphology were performed. Metabolic profiling was carried out through untargeted metabolomics (LC-MS/MS and GC/MS), mRNA and/or protein levels analysis to investigate glycolyis, pyruvate oxidation, Krebs cycle, aminoacid synthesis, gluconeogenesis and lipid oxidation. Results Atm genetic inactivation induced cardiomyocytes hypertrophy and fetal gene reprogramming in sham mice, with normal cardiac function and in the absence of fibrosis or mitochondrial dysfunction (Figure 1A). After TAC 1w, cardiac function was significantly decreased in Atm−/− mice, compared to Atm+/+ (Figure 1B). In both sham and TAC 1w Atm−/− mice, significant metabolic abnormalities were identified, including switching of glycolysis, reduction of pyruvate oxidation (Figure 1B), activation of aminoacid synthesis and accumulation of long and short-chain fatty acid conjugated with carnitine. Pyruvate accumulation was associated to a significant reduction of pyruvate carrier (MPC1-MPC2) and pyruvate dehydrogenase (PDH) levels in sham and TAC 1w Atm−/− mice. Conclusions ATM regulates gene expression, cardiomyocyte hypertrophy and cardiac responses to pressure overload, modulating cardiac metabolism and the profile of intracellular substrate utilization in the heart. Thus, ATM might represent a novel important player in the development of cardiac dysfunction and a novel therapeutic target. Figure 1 Funding Acknowledgement Type of funding source: Other. Main funding source(s): CP was supported by Ministero dell'Istruzione, Università e Ricerca Scientifica grant (2015583WMX) and Programma STAR grant by Federico II University and Compagnia di San Paolo. RP was supported by a research grant provided by the Cardiopath PhD program.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Bianca C Bernardo ◽  
Sally S Nguyen ◽  
Catherine E Winbanks ◽  
Xiao-Ming Gao ◽  
Esther J Boey ◽  
...  

Introduction: Targeting microRNAs differentially regulated in settings of stress and protection could represent a new approach for the treatment of heart failure. miR-652 expression increased in hearts of a cardiac stress mouse model and was downregulated in a model of cardiac protection. Aim: To assess the therapeutic potential of silencing miR-652 in a mouse model with established pathological hypertrophy and cardiac dysfunction due to pressure overload. Methods: Mice were subjected to a sham operation (n=10) or transverse aortic constriction (TAC, n=14) for 4 weeks to induce hypertrophy and cardiac dysfunction. Mice were subcutaneously administered a locked nucleic acid (LNA)-antimiR-652 or LNA-control. Cardiac function was assessed by echocardiography before and 8 weeks post treatment, followed by molecular and histological analyses. Results: Expression of miR-652 increased in hearts subjected to pressure overload compared to sham operated mice (2.9 fold, n=3-5, P<0.05), but was silenced in hearts of mice administered LNA-antimiR-652 (95% decrease, n=3-7, P<0.05). In mice subjected to pressure overload, inhibition of miR-652 improved cardiac function (29±1% at 4 weeks post TAC compared to 35±1% post treatment, n=7, P<0.001) and attenuated cardiac hypertrophy. Functional and morphologic improvements in hearts of treated mice were associated with reduced cardiac fibrosis, apoptosis, cardiomyocyte size; decreased B-type natriuretic peptide gene expression; and preserved angiogenesis (all P<0.05, n=4-7/group). Mechanistically, we identified Jagged1, a Notch1 ligand, as a direct target of miR-652 by luciferase assay. Jagged1 and Notch1 mRNA were upregulated in hearts of TAC treated mice (1.2-1.7 fold, n=7, P<0.05). Importantly, chronic knockdown of miR-652 was not associated with any notable toxicity in other tissues. Conclusion: Therapeutic silencing of miR-652 protects the heart against pathological cardiac remodeling and improves heart function via mechanisms that are associated with preserved angiogenesis, decreased fibrosis and upregulation of a miR-652 target, Jagged1. These studies provide the first evidence that targeted inhibition of miR-652 could represent an attractive approach for the treatment of heart failure.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yoshitake Cho ◽  
Ruixia Li ◽  
Ana M Manso ◽  
Robert S Ross

Talin (Tln) is a component of muscle costameres that links integrins to other components of the cellular cytoskeleton and plays an important role in maintaining the cellular integrity of cardiac myocytes (CM). There are two talin genes, Tln1 and Tln2, expressed in the heart. Tln1 is ubiquitously expressed, and Tln2 is dominantly expressed in CM. In our previous study, we show that the global deletion of Tln2 in mice (T2KO) caused no structural or functional changes in the heart, presumably because CM Tln1 became up-regulated. However, we found that mice lacking both CM Tln1 and Tln2 exhibit cardiac dysfunction by 4 weeks (w) of age with 100% mortality by 6 months (m), showing Tln plays an essential role in cardiac development and in maintaining cardiac function. In this study, we produced a tamoxifen (Tamo)-inducible mouse model in which Tln1 could be explicitly reduced in the adult CM (T1icKO), and then generate T1icKO:T2KO (T1/2dKO), so that the function of Tln could be assessed in the postnatal heart. T2KO and Tln1/2dKO mice were injected with Tamo at 8w. Echocardiograms were performed to evaluate cardiac function up to 8w post-Tamo injection. While T2KO mice showed normal cardiac function, T1/2dKO exhibited a gradual decrease in function post-Tamo injection. At 8w post-Tamo injection, T1/2dKO mice showed cardiac hypertrophy, fibrosis, and heart failure. To understand the mechanism by which deletion CM talin leads to cardiac dysfunction, left ventricular tissue protein lysates from T2KO and T1/2dKO mice at 4w post-Tamo when cardiac function (echo) and structure were preserved in dKO. The protein lysates were subjected to quantitative mass spectrometry analysis. We found there are 1,100 proteins differentially expressed in T2KO and T1/2dKO hearts. Pathway analysis was performed, and the results showed that proteins involved in vesicle transport, protein folding, and innate immunity are most up-regulated in the T1/2dKO heart. Taken together, our results show that Tln is required for maintaining proper cardiac function in the adult heart. The deletion of Tln in CM results in the up-regulation of multiple intracellular pathways, and we are currently studying the role of each pathway in the pathogenesis of heart failure induced by CM Tln deletion.


Sign in / Sign up

Export Citation Format

Share Document