scholarly journals What makes a cry a cry? A review of infant distress vocalizations

2012 ◽  
Vol 58 (5) ◽  
pp. 698-726 ◽  
Author(s):  
Susan Lingle ◽  
Megan T. Wyman ◽  
Radim Kotrba ◽  
Lisa J. Teichroeb ◽  
Cora A. Romanow

Abstract In contrast to the cries of human infants, sounds made by non-human infants in different stressful behavioral contexts (hunger or physical discomfort, isolation, capture by humans or predators) are usually treated as distinct types of vocalizations. However, if distress vocalizations produced by different species and in different contexts share a common motivational state and associated neurochemical pathways, we can expect them to share a common acoustic structure and adaptive function, showing only limited variation that corresponds to the infant’s level of arousal. Based on this premise, we review the acoustic structure and adaptive function of two types of distress calls, those given when infants were isolated from their mothers (isolation calls) or captured by humans (capture calls). We conducted a within-context comparison examining the two call types across a diverse selection of mammalian species and other vertebrate groups, followed by a comparison of how acoustic structure and function differs between these contexts. In addition, we assessed acoustic traits that are critical to the response of caregivers. Across vertebrate species, distress vocalizations produced in these two behavioral contexts tend to be tonal with a simple chevron, flat or descending pattern of frequency modulation. Reports that both isolation and capture calls of vertebrate infants serve to attract care-givers are universal, and the fundamental frequency of infant vocalizations is often critical to this response. The results of our review are consistent with the hypothesis that differences in the acoustic structure of isolation and capture distress vocalizations reflect differences in arousal, and not discrete functions. The similarity in acoustic structure and caregiver response observed across vertebrates adds support to the hypothesis that the production and processing of distress vocalizations are part of a highly-conserved system of social vocal behaviour in vertebrates. Bioacoustic research may move forward by recognizing the commonality among different forms of infant solicitations that attract caregivers, and the commonality of these solicitations with vocalizations that attract conspecifics in still other behavioral contexts.

2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


CNS Spectrums ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Gerianne M. Alexander ◽  
Bradley S. Peterson

AbstractIn a variety of mammalian species, prenatal androgens organize brain structures and functions that are later activated by steroid hormones in postnatal life. In humans, studies of individuals with typical and atypical development suggest that sex differences in reproductive and nonreproductive behavior derive in part from similar prenatal and postnatal steroid effects on brain development. This paper provides a summary of research investigating hormonal influences on human behavior and describes how sex differences in the prevalences and natural histories of developmental psychopathologies may be consistent with these steroid effects. An association between patterns of sexual differentiation and specific forms of psychopathology suggests novel avenues for assessing the effects of sex steroids on brain structure and function, which may in turn improve our understanding of typical and atypical development in women and men.


1998 ◽  
Vol 141 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Damien F. Hudson ◽  
Kerry J. Fowler ◽  
Elizabeth Earle ◽  
Richard Saffery ◽  
Paul Kalitsis ◽  
...  

CENP-B is a constitutive centromere DNA-binding protein that is conserved in a number of mammalian species and in yeast. Despite this conservation, earlier cytological and indirect experimental studies have provided conflicting evidence concerning the role of this protein in mitosis. The requirement of this protein in meiosis has also not previously been described. To resolve these uncertainties, we used targeted disruption of the Cenpb gene in mouse to study the functional significance of this protein in mitosis and meiosis. Male and female Cenpb null mice have normal body weights at birth and at weaning, but these subsequently lag behind those of the heterozygous and wild-type animals. The weight and sperm content of the testes of Cenpb null mice are also significantly decreased. Otherwise, the animals appear developmentally and reproductively normal. Cytogenetic fluorescence-activated cell sorting and histological analyses of somatic and germline tissues revealed no abnormality. These results indicate that Cenpb is not essential for mitosis or meiosis, although the observed weight reduction raises the possibility that Cenpb deficiency may subtly affect some aspects of centromere assembly and function, and result in reduced rate of cell cycle progression, efficiency of microtubule capture, and/or chromosome movement. A model for a functional redundancy of this protein is presented.


2018 ◽  
Vol 285 (1892) ◽  
pp. 20182176 ◽  
Author(s):  
Caroline Casey ◽  
Colleen Reichmuth ◽  
Daniel P. Costa ◽  
Burney Le Boeuf

Vocal dialects are fundamental to our understanding of the transmission of social behaviours between individuals and populations, however few accounts trace this phenomenon among mammals over time. Northern elephant seals ( Mirounga angustirostris ) provide a rare opportunity to examine the trajectory of dialects in a long-lived mammalian species. Dialects were first documented in the temporal patterns of the stereotyped vocal displays produced by breeding males at four sites in the North Pacific in 1968 and 1969, as the population recovered from extreme exploitation. We evaluated the longevity of these geographical differences by comparing these early recordings to calls recently recorded at these same locations. While the presence of vocal dialects in the original recordings was re-confirmed, geographical differences in vocal behaviour were not found at these breeding rookeries nearly 50 years later. Moreover, the calls of contemporary males displayed more structural complexity after approximately four generations, with substantial between-individual variation and call features not present in the historical data. In the absence of measurable genetic variation in this species—owing to an extreme population bottleneck—a combination of migration patterns and cultural mutation are proposed as factors influencing the fall of dialects and the dramatic increase in call diversity.


1995 ◽  
Vol 7 (4) ◽  
pp. 847 ◽  
Author(s):  
C Gagnon

With very few exceptions, the basic structure of the 9+2 axoneme has been well preserved over a very long period of evolution from protozoa to mammais. This stability indicates that the basic structural components of the axoneme visible by electron microscopy, as well as most of the other unidentified components, have withstood the passage of time. It also means that components of the 9+2 axoneme have sufficient diversity in function to accommodate the various types of motility patterns encountered in different species of flagella. Several of the 200 polypeptides that constitute the axoneme have been identified as components of the dynein arms, radial spokes etc. but many more remain to be identified and their function(s) remain to be determined. Because this review deals with the regulation of flagellar movement at the axonemal level, it does not include regulation of flagella by extracellular factors unless these factors have a direct action on axonemal components. In this context, it is very important firstly to understand the structural components of the axoneme and how they influence and regulate axonemal movement. Different primitive organisms are mentioned in this review since major breakthroughs in our understanding of how an axoneme generates different types of movement have been made through their study. Despite some variations in structure and function of axonemal components, the basic mechanisms involved in the regulation of flagella from Chlamydomonas or sea urchin spermatozoa should also apply to the more evolved mammalian species, including human spermatozoa.


2001 ◽  
Vol 79 (4) ◽  
pp. 297-302 ◽  
Author(s):  
R Boonstra ◽  
L Galea ◽  
S Matthews ◽  
J M Wojtowicz

The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.Key words: neurogenesis, hippocampus, dentate gyrus, learning, memory, wild population.


2014 ◽  
Vol 10 (5) ◽  
pp. 20140095 ◽  
Author(s):  
Kathleen Wermke ◽  
Johannes Hain ◽  
Klaus Oehler ◽  
Peter Wermke ◽  
Volker Hesse

The specific impact of sex hormones on brain development and acoustic communication is known from animal models. Sex steroid hormones secreted during early development play an essential role in hemispheric organization and the functional lateralization of the brain, e.g. language. In animals, these hormones are well-known regulators of vocal motor behaviour. Here, the association between melody properties of infants' sounds and serum concentrations of sex steroids was investigated. Spontaneous crying was sampled in 18 healthy infants, averaging two samples taken at four and eight weeks, respectively. Blood samples were taken within a day of the crying samples. The fundamental frequency contour (melody) was analysed quantitatively and the infants' frequency modulation skills expressed by a melody complexity index (MCI). These skills provide prosodic primitives for later language. A hierarchical, multiple regression approach revealed a significant, robust relationship between the individual MCIs and the unbound, bioactive fraction of oestradiol at four weeks as well as with the four-to-eight-week difference in androstenedione. No robust relationship was found between the MCI and testosterone. Our findings suggest that oestradiol may have effects on the development and function of the auditory–vocal system in human infants that are as powerful as those in vocal-learning animals.


2016 ◽  
Vol 201 (4) ◽  
pp. 239-252 ◽  
Author(s):  
Sonja E. Lobo ◽  
Luciano César P.C. Leonel ◽  
Carla M.F.C. Miranda ◽  
Talya M. Coelho ◽  
Guilherme A.S. Ferreira ◽  
...  

The placenta is a temporal, dynamic and diverse organ with important immunological features that facilitate embryonic and fetal development and survival, notwithstanding the fact that several aspects of its formation and function closely resemble tumor progression. Placentation in mammals is commonly used to characterize the evolution of species, including insights into human evolution. Although most placentas are discarded after birth, they are a high-yield source for the isolation of stem/progenitor cells and are rich in extracellular matrix (ECM), representing an important resource for regenerative medicine purposes. Interactions among cells, ECM and bioactive molecules regulate tissue and organ generation and comprise the foundation of tissue engineering. In the present article, differences among several mammalian species regarding the placental types and classifications, phenotypes and potency of placenta-derived stem/progenitor cells, placental ECM components and current placental ECM applications were reviewed to highlight their potential clinical and biomedical relevance.


1989 ◽  
Vol 37 (3) ◽  
pp. 365 ◽  
Author(s):  
JAM Graves ◽  
AH Sinclair ◽  
JA Spencer

Comparisons between the gene maps of distantly related mammalian species can provide information about the evolution of genome arrangement and function in mammals. Marsupial gene mapping is now being vigorously pursued, using newly developed cell and molecular techniques to complement classic breeding studies of model species. Gene associations and localisations established by all these techniques are tabulated, and the beginnings of gene maps, based on in situ hybridisation, are presented for a macropodid and a dasyurid species. The significance of marsupial gene mapping is apparent even from these limited data, which show that large autosomal regions have been conserved between marsupials and eutherians. However, an ancient X-autosome translocation is revealed, which either removed most of the human X short-arm markers (including the putative sex determining factor) to autosomes or added this region to a smaller ancestral X. The implications of these findings to theories of mammalian sex chromosome evolution and function are discussed, and a hypothesis proposed for a gradual differentiation of the mammalian X and Y chromosome, accompanied by progressive spreading of X chromosome inactivation.


Sign in / Sign up

Export Citation Format

Share Document