scholarly journals Matrix metalloproteinase-1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation

2005 ◽  
Vol 27 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Tuula Ingman ◽  
Satu Apajalahti ◽  
Päivi Mäntylä ◽  
Pirjo Savolainen ◽  
Timo Sorsa
2003 ◽  
Vol 82 (12) ◽  
pp. 1018-1022 ◽  
Author(s):  
S. Apajalahti ◽  
T. Sorsa ◽  
S. Railavo ◽  
T. Ingman

Orthodontic force induces biochemical responses in the periodontal ligament (PDL), but the matrix metalloproteinase (MMP)-dependent molecular mechanisms in orthodontically induced periodontal remodeling have remained unclear. Previous studies indicate that mechanical stress induces MMP-1 production in human PDL cells in vitro. We tested the hypothesis whether the in vivo levels, molecular forms, and degree of activation of MMP-1 and MMP-8 in gingival crevicular fluid (GCF) reflect an early stage of orthodontic tooth movement. Molecular forms of MMP-1 and MMP-8 were analyzed by Western blot, and MMP-8 levels by quantitative immunofluoro-metric assay (IFMA). The results showed that GCF MMP-8 levels for orthodontically treated teeth were significantly higher at 4-8 hrs after force application than before activation, and when compared with the control teeth (p < 0.05). Analysis of our data indicates that the cells within the periodontium are up-regulated to produce MMP-8, and the increased expression and activation of GCF MMP-8 reflect enhanced periodontal remodeling induced by orthodontic force.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Kakali ◽  
I. Giantikidis ◽  
I. Sifakakis ◽  
E. Kalimeri ◽  
I. Karamani ◽  
...  

Abstract Background The aim of the present study was to provide an overview of gingival crevicular fluid (GCF) bone turnover markers (BTMs) concerning the physiology of orthodontic tooth movement (OTM) and assess their potential contributions to regulating bone remodeling, that could prove useful in designing future approaches to modulating orthodontic tooth movement. Methods Multiple electronic databases (MEDLINE/PubMed, Ovid MEDLINE, Ovid Embase, LILACS, and Cochrane Library) were searched up to October 1st, 2020. Randomized controlled trials (RCTs), controlled clinical trials, observational studies of prospective and retrospective designs, and cross-sectional studies reporting on levels of BTMs in GCF were eligible for inclusion. The quality of the included RCTs was assessed per the revised Cochrane risk of bias tool for randomized trials (RoB 2.0), whereas the risk of bias of the included cohort studies was assessed using the Risk Of Bias In Non-randomized Studies of Interventions tool. Results Five RCTs, 9 prospective cohort studies, and 1 cross-sectional study fulfilled the inclusion criteria. The risk of bias was deemed as high for the RCTs and 4 of the prospective studies and moderate for the rest of the studies. The following biomarkers for bone formation were assessed: bone alcaline phosphatase (BALP), alcaline phosphatase (ALP), and osteocalcin (OC). For bone resorption, the following BTMs were assessed: deoxypyridinoline (DPD) and pyridinoline (PYD), N-terminal telopeptide (NTX), osteopontin (OPN), and tartrate-resistant acid phosphatase (TRAP). The follow-up period ranged mainly from baseline to 45 days, although one study had an expanded follow-up period of up to 16 months. The results of the included studies comparing different BTMs were heterogeneous and qualitatively reported. Conclusions Current evidence continues to support the potential for BTMs to provide clinically useful information particularly for adjusting or standardizing the orthodontic stimulus. The present systematic review has retrieved studies of high, overall, risk of bias, and has unveiled a substantial clinical and methodological heterogeneity among included studies. Further data of the relationships between the clinical assays and the physiological or pre-analytical factors contributing to variability in BTMs’ concentrations are required. Systematic review registration CRD42020212056.


2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Simina Chelărescu ◽  
Petra Șurlin ◽  
Mioara Decusară ◽  
Mădălina Oprică ◽  
Eugen Bud ◽  
...  

Background: The crevicular fluid analysis represents a useful diagnosis tool, with the help of which noninvasive cellular metabolic activity can be analyzed. The aim of the study is to investigate comparatively IL1β and IL6 in the gingival crevicular fluid of clinically healthy adolescents and young adults during the acute phase of orthodontic treatment. Methods: Gingival crevicular fluid was collected from 20 patients (aged between 11 and 28) undergoing orthodontic treatment. Measurements were taken before (T0) and after 24 h after distalization forces were activated (T1). IL1β and IL 6 were analyzed using Elisa tests. The statistical tests used were two-sided t tests. Results: Between the two time periods there was a significant raise both in the crevicular fluid rate (0.57 µL at T0 vs. 0.95 µL at T1, p = 0.001) and in IL1β levels (15.67 pg/µL at T0 vs. 27.94 pg/µL at T1, p = 0.009). We were able to identify IL6 only in a third of the sites. There is a significantly increased level of ILβ at T1 in adolescents, more than in young adults (42.96 pg/µL vs. 17.93 pg/µL, p = 0.006). Conclusions: In the early stage of orthodontic treatment, the periodontal tissues of adolescents are more responsive to orthodontic forces than those of young adults.


2021 ◽  
Vol 10 (7) ◽  
pp. 1405
Author(s):  
Fabrizia d’Apuzzo ◽  
Ludovica Nucci ◽  
Ines Delfino ◽  
Marianna Portaccio ◽  
Giuseppe Minervini ◽  
...  

Optical vibrational techniques show a high potentiality in many biomedical fields for their characteristics of high sensitivity in revealing detailed information on composition, structure, and molecular interaction with reduced analysis time. In the last years, we have used these techniques for investigating gingival crevicular fluid (GCF) and periodontal ligament (PDL) during orthodontic tooth treatment. The analysis with Raman and infrared signals of GCF and PDL samples highlighted that different days of orthodontic force application causes modifications in the molecular secondary structure at specific wavenumbers related to the Amide I, Amide III, CH deformation, and CH3/CH2. In the present review, we report the most relevant results and a brief description of the experimental techniques and data analysis procedure in order to evidence that the vibrational spectroscopies could be a potential useful tool for an immediate monitoring of the individual patient’s response to the orthodontic tooth movement, aiming to more personalized treatment reducing any side effects.


2002 ◽  
Vol 122 (5) ◽  
pp. 548-556 ◽  
Author(s):  
Giuseppe Perinetti ◽  
Michele Paolantonio ◽  
Michele D'Attilio ◽  
Domenico D'Archivio ◽  
Domenico Tripodi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document