Archivory in hypersaline aquatic environments: Haloarchaea as a dietary source for the brine shrimp Artemia

Author(s):  
R M A Lopes-dos-Santos ◽  
Marleen De Troch ◽  
Peter Bossier ◽  
Gilbert Van Stappen

ABSTRACT Archaea have been the most overlooked and enigmatic of the three domains of life for decades. Knowledge of key ecological interactions such as trophic links between this domain and higher level organisms remains extremely limited. The co-occurrence of halophilic Archaea (haloarchaea) and the non-selective filter feeder, brine shrimp Artemia under the unique ecological characteristics of hypersaline aquatic environments, constitutes an excellent opportunity to further unravel the ecological role of the Archaea domain as a source of food to zooplankton metazoans. In the present study, we combine the use of haloarchaea biomass assimilation experiments using 13C isotope as tracer, with gnotobiotic Artemia culture tests using haloarchaea mono-diets, to investigate potential trophic links between the organisms. Our results demonstrated the ability of Artemia to assimilate nutrients from mono-diets of haloarchaea biomass in order to survive and grow, providing clear indications that archivory may occur in hypersaline aquatic environments. Additionally, our study highlights the use of stable isotopes labelling as a potential tool to further disentangle the specific pathways by which archaeal cellular constituents are digested by consumers.

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Michael Wells ◽  
John F Stolz

ABSTRACT Selenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.


2020 ◽  
Vol 09 ◽  
Author(s):  
Subba Rao Toleti

: The review is an attempt to introduce the readers in brief about biofilms and their implications as well as some new perceptions in biotechnology. Biofilms are adherent microbial communities, which are developed on submerged surfaces in aquatic environments. Biofilms play a significant role in exopolymer production, material deterioration and also cause harmful infections. Further, the role of corrosion causing biofilm bacteria in deterioration of different materials, microbial biofilms and their enzymatic processes in reducing the toxicity of pollutants in industrial effluents are elaborated, along with clean technologies for wastewater treatment. Biotechnology is defined as any technological application that uses biological systems to synthesize or modify products or processes. The applications include biochemical processes, medical care, cell and tissue culture as well as synthetic biology and others. Synthetic biology details about the design, construction of new biological components and systems for useful purposes. Finally, to overcome the limitations that are inherent to the use of cellular host’s, cell-free systems as critical platforms for synthetic biology applications. This mini-review also mentions about new diagnostic products based on enzymes, monoclonal antibodies and engineered proteins as well as novel prophylactic vaccines.


2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sharon A. Huws ◽  
Joan E. Edwards ◽  
Wanchang Lin ◽  
Francesco Rubino ◽  
Mark Alston ◽  
...  

Abstract Background Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. Results Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be ‘cheating’ in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. Conclusions In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 430
Author(s):  
Vasso Apostolopoulos ◽  
Joanna Bojarska ◽  
Tsun-Thai Chai ◽  
Sherif Elnagdy ◽  
Krzysztof Kaczmarek ◽  
...  

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Philipp K Zuber ◽  
Irina Artsimovitch ◽  
Monali NandyMazumdar ◽  
Zhaokun Liu ◽  
Yuri Nedialkov ◽  
...  

RfaH, a transcription regulator of the universally conserved NusG/Spt5 family, utilizes a unique mode of recruitment to elongating RNA polymerase to activate virulence genes. RfaH function depends critically on an ops sequence, an exemplar of a consensus pause, in the non-template DNA strand of the transcription bubble. We used structural and functional analyses to elucidate the role of ops in RfaH recruitment. Our results demonstrate that ops induces pausing to facilitate RfaH binding and establishes direct contacts with RfaH. Strikingly, the non-template DNA forms a hairpin in the RfaH:ops complex structure, flipping out a conserved T residue that is specifically recognized by RfaH. Molecular modeling and genetic evidence support the notion that ops hairpin is required for RfaH recruitment. We argue that both the sequence and the structure of the non-template strand are read out by transcription factors, expanding the repertoire of transcriptional regulators in all domains of life.


Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.


Sign in / Sign up

Export Citation Format

Share Document