Novel putative rhizobial species with different symbiovars nodulate Lotus creticus and their differential preference to distinctive soil properties

2020 ◽  
Vol 367 (11) ◽  
Author(s):  
Mokhtar Rejili ◽  
Mohamed Ali BenAbderrahim ◽  
Mohamed Mars ◽  
Janine Darla Sherrier

ABSTRACT Phylogenetically diverse rhizobial strains endemic to Tunisia were isolated from symbiotic nodules of Lotus creticus, growing in different arid extremophile geographical regions of Tunisia, and speciated using multiloci-phylogenetic analysis as Neorhizobium huautlense (LCK33, LCK35, LCO42 and LCO49), Ensifer numidicus (LCD22, LCD25, LCK22 and LCK25), Ensifer meliloti (LCK8, LCK9 and LCK12) and Mesorhizobium camelthorni (LCD11, LCD13, LCD31 and LCD33). In addition, phylogenetic analyses revealed eight additional strains with previously undescribed chromosomal lineages within the genera Ensifer (LCF5, LCF6 and LCF8),Rhizobium (LCF11, LCF12 and LCF14) and Mesorhizobium (LCF16 and LCF19). Analysis using the nodC gene identified five symbiovar groups, four of which were already known. The remaining group composed of two strains (LCD11 and LCD33) represented a new symbiovar of Mesorhizobium camelthorni, which we propose designating as sv. hedysari. Interestingly, we report that soil properties drive and structure the symbiosis of L. creticus and its rhizobia.

2021 ◽  
Vol 16 (1) ◽  
pp. 711-718
Author(s):  
Thuan Duc Lao ◽  
Hanh Van Trinh ◽  
Loi Vuong ◽  
Luyen Tien Vu ◽  
Thuy Ai Huyen Le ◽  
...  

Abstract The entomopathogenic fungus T011, parasitizing on nymph of Cicada, collected in the coffee garden in Dak Lak Province, Vietnam, was preliminarily morphologically identified as Isaria cicadae, belonged to order Hypocreales and family Clavicipitaceae. To ensure the authenticity of T011, phylogenetic analysis of the concatenated set of multiple genes including ITS, nrLSU, nrSSU, Rpb1, and Tef1 was applied to support the identification. Genomic DNA was isolated from dried sample T011. The PCR assay sequencing was applied to amplify ITS, nrLSU, nrSSU, Rpb1, and Tef1 gene. For phylogenetic analysis, the concatenated data of both target gens were constructed with MEGAX with a 1,000 replicate bootstrap based on the neighbor-joining, maximum likelihood, maximum parsimony method. As the result, the concatenated data containing 62 sequences belonged to order Hypocreales, families Clavicipitaceae, and 2 outgroup sequences belonged to order Hypocreales, genus Verticillium. The phylogenetic analysis results indicated that T011 was accepted at subclade Cordyceps and significantly formed the monophyletic group with referent Cordyceps cicadae (Telemorph of Isaria cicadae) with high bootstrap value. The phylogenetically analyzed result was strongly supported by our morphological analysis described as the Isaria cicadae. In summary, phylogenetic analyses based on the concatenated dataset were successfully applied to strengthen the identification of T011 as Isaria cicadae.


2018 ◽  
Vol 44 (1) ◽  
pp. 20
Author(s):  
Eloiza Teles Caldart ◽  
Helena Mata ◽  
Cláudio Wageck Canal ◽  
Ana Paula Ravazzolo

Background: Phylogenetic analyses are an essential part in the exploratory assessment of nucleic acid and amino acid sequences. Particularly in virology, they are able to delineate the evolution and epidemiology of disease etiologic agents and/or the evolutionary path of their hosts. The objective of this review is to help researchers who want to use phylogenetic analyses as a tool in virology and molecular epidemiology studies, presenting the most commonly used methodologies, describing the importance of the different techniques, their peculiar vocabulary and some examples of their use in virology.Review: This article starts presenting basic concepts of molecular epidemiology and molecular evolution, emphasizing their relevance in the context of viral infectious diseases. It presents a session on the vocabulary relevant to the subject, bringing readers to a minimum level of knowledge needed throughout this literature review. Within its main subject, the text explains what a molecular phylogenetic analysis is, starting from a multiple alignment of nucleotide or amino acid sequences. The different software used to perform multiple alignments may apply different algorithms. To build a phylogeny based on amino acid or nucleotide sequences it is necessary to produce a data matrix based on a model for nucleotide or amino acid replacement, also called evolutionary model. There are a number of evolutionary models available, varying in complexity according to the number of parameters (transition, transversion, GC content, nucleotide position in the codon, among others). Some papers presented herein provide techniques that can be used to choose evolutionary models. After the model is chosen, the next step is to opt for a phylogenetic reconstruction method that best fits the available data and the selected model. Here we present the most common reconstruction methods currently used, describing their principles, advantages and disadvantages. Distance methods, for example, are simpler and faster, however, they do not provide reliable estimations when the sequences are highly divergent. The accuracy of the analysis with probabilistic models (neighbour joining, maximum likelihood and bayesian inference) strongly depends on the adherence of the actual data to the chosen development model. Finally, we also explore topology confidence tests, especially the most used one, the bootstrap. To assist the reader, this review presents figures to explain specific situations discussed in the text and numerous examples of previously published scientific articles in virology that demonstrate the importance of the techniques discussed herein, as well as their judicious use.Conclusion: The DNA sequence is not only a record of phylogeny and divergence times, but also keeps signs of how the evolutionary process has shaped its history and also the elapsed time in the evolutionary process of the population. Analyses of genomic sequences by molecular phylogeny have demonstrated a broad spectrum of applications. It is important to note that for the different available data and different purposes of phylogenies, reconstruction methods and evolutionary models should be wisely chosen. This review provides theoretical basis for the choice of evolutionary models and phylogenetic reconstruction methods best suited to each situation. In addition, it presents examples of diverse applications of molecular phylogeny in virology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongru Su ◽  
Eri Onoda ◽  
Hitoshi Tai ◽  
Hiromi Fujita ◽  
Shigetoshi Sakabe ◽  
...  

AbstractEhrlichia species are obligatory intracellular bacteria transmitted by arthropods, and some of these species cause febrile diseases in humans and livestock. Genome sequencing has only been performed with cultured Ehrlichia species, and the taxonomic status of such ehrlichiae has been estimated by core genome-based phylogenetic analysis. However, many uncultured ehrlichiae exist in nature throughout the world, including Japan. This study aimed to conduct a molecular-based taxonomic and ecological characterization of uncultured Ehrlichia species or genotypes from ticks in Japan. We first surveyed 616 Haemaphysalis ticks by p28-PCR screening and analyzed five additional housekeeping genes (16S rRNA, groEL, gltA, ftsZ, and rpoB) from 11 p28-PCR-positive ticks. Phylogenetic analyses of the respective genes showed similar trees but with some differences. Furthermore, we found that V1 in the V1–V9 regions of Ehrlichia 16S rRNA exhibited the greatest variability. From an ecological viewpoint, the amounts of ehrlichiae in a single tick were found to equal approx. 6.3E+3 to 2.0E+6. Subsequently, core-partial-RGGFR-based phylogenetic analysis based on the concatenated sequences of the five housekeeping loci revealed six Ehrlichia genotypes, which included potentially new Ehrlichia species. Thus, our approach contributes to the taxonomic profiling and ecological quantitative analysis of uncultured or unidentified Ehrlichia species or genotypes worldwide.


Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


Zootaxa ◽  
2011 ◽  
Vol 2918 (1) ◽  
pp. 15 ◽  
Author(s):  
I. WESLEY GAPP ◽  
BRUCE S. LIEBERMAN ◽  
MICHAEL C. POPE ◽  
KELLY A. DILLIARD

The Early Cambrian olenelline trilobites are a diverse clade and have been the subject of several phylogenetic analyses. Here, three new species of Bradyfallotaspis Fritz, 1972 (B. coriae, B. nicolascagei, and B. sekwiensis) and one new species of Nevadia Walcott, 1910 (N. saupeae) are described from the Sekwi Formation of the Mackenzie Mountains, Northwest Territories, Canada. In addition, new specimens potentially referable to Nevadia ovalis McMenamin, 1987 were recovered that may expand that species’ geographic range, which was thought to be restricted to Sonora, Mexico. The results of a phylogenetic analysis incorporating several olenelline taxa, including Judomia absita Fritz, 1973 from the Sekwi Formation, are also presented herein. This species has been assigned to various olenelline genera, including Judomia Lermontova, 1951 and Paranevadella Palmer & Repina, 1993. Phylogenetic analysis suggests this species is closely related to Judomia tera Lazarenko, 1960 from Siberia. This phylogenetic relationship provides further support for the hypothesis that a close biogeographic relationship existed between Laurentia and Siberia during the Cambrian.


2005 ◽  
Vol 71 (6) ◽  
pp. 3235-3247 ◽  
Author(s):  
Heath J. Mills ◽  
Robert J. Martinez ◽  
Sandra Story ◽  
Patricia A. Sobecky

ABSTRACT The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.


2002 ◽  
Vol 76 (4) ◽  
pp. 692-708 ◽  
Author(s):  
Bruce S. Lieberman

This paper presents a phylogenetic analysis of the “Fallotaspidoidea,” a determination of the biogeographic origins of the eutrilobites, and an evaluation of the timing of the Cambrian radiation based on biogeographic evidence. Phylogenetic analysis incorporated 29 exoskeletal characters and 16 ingroup taxa. In the single most parsimonious tree the genus Fallotaspidella Repina, 1961, is the sister taxon of the sutured members of the Redlichiina Richter, 1932. Phylogenetic analysis is also used to determine the evolutionary relationships of two new species of “fallotaspidoids” distributed in the White-Inyo Range of California that have been previously illustrated but not described. These species had been referred to Fallotaspis Hupé, 1953, and used to define the occurrence of the eponymous Fallotaspis Zone in southwestern Laurentia. However, these two new species need to be reassigned to Archaeaspis Repina in Khomentovskii and Repina, 1965. They are described as Archaeaspis nelsoni and A. macropleuron. Their phylogenetic status suggests that the Fallotaspis Zone in southwestern Laurentia is not exactly analogous to the Fallotaspis Zone in Morocco, where that division was originally defined. Thus, changes to the biostratigraphy of the Early Cambrian of southwestern Laurentia may be in order. Furthermore, specimens of a new species referable to Nevadia Walcott, 1910, are recognized in strata traditionally treated as within the Fallotaspis Zone, which is held to underlie the Nevadella Zone, suggesting further biostratigraphic complexity within the basal Lower Cambrian of southwestern Laurentia.Phylogenetic analyses of the Olenellina and Olenelloidea, along with the phylogenetic analysis presented here, are used to consider the biogeographic origins of the eutrilobites. The group appears to have originated in Siberia. Biogeographic patterns in trilobites, especially those relating to the split between the Olenellid and Redlichiid faunal provinces are important for determining the timing of the Cambrian radiation. Some authors have argued that there was a hidden radiation that significantly predated the Cambrian, whereas others have suggested that the radiation occurred right at the start of the Cambrian. The results from trilobite biogeography presented here support an early radiation. They are most compatible with the notion that there was a vicariance event relating to the origin of the redlichiinid trilobites, and thus the eponymous Redlichiid faunal province, from the “fallotaspidoids,” whose representatives were part of the Olenellid faunal province. This vicariance event, based on biogeographic patterns, is likely related to the breakup of Pannotia which occurred sometime between 600–550 Ma, suggesting that the initial episodes of trilobite cladogenesis occurred within that interval. As trilobites are relatively derived arthropods, this suggests that Númerous important episodes of metazoan cladogenesis precede both the earliest trilobitic part of the Early Cambrian, and indeed, even the Early Cambrian.


Author(s):  
Udon Pongkawong ◽  
◽  
Jatupol Kampuansai ◽  
Rossarin Pollawatn ◽  
Arunothai Jampeetong ◽  
...  

Abstract “Dok Hin” is the Thai local name for Selaginella species that form rosettes. They commonly distributes in Siberia, Manchuria, southern China, Japan, the Philippines and Thailand. Morphology of Dok Hin is very resemble leading to misidentification. So, exactly number of species of Dok Hin in Thailand and their differences in morphological characteristics is not well understood. Thus, revision of morphological characters and phylogenetic confirmation of the taxonomic identification are needed. This study aims to examine morphological charateristics and phylogenetic patterns in eight populations of the Dok Hin in Northern Thailand. Morphology of Dok Hin from each populations was quantitatively examined using 15 vegetative and 6 reproductive characters meanwhile phylogenetic analyses was explored by DNA barcode ITS2. The results of the phylogenetic analysis revealed the existence of two species of Dok Hin, S. tamariscina and S. pulvinata. Selaginella tamariscina can be distinguished from S. pulvinata by its presence of a pseudotrunk above ground and ridges of dorsal leaves. On the other hand, the results of phylogenetic analysis indicated the differences among populations of S. pulvinata as well. Chiang Mai populations of S. pulvinata was characterized by peculiar set of characters long leaves and leaf apices look like caudate, while the rest of their populations have shorter leaves and leaf apices look like aristate. It indicates that S. pulvinata has genetic and phenotypic divergence among populations. However, additional studies of Dok Hin populations in other parts of Thailand and studies on different genetic markers are necessary to confirm the taxonomic status of S. pulvinata. Keywords: Dok Hin, Morphometric, Phylogeny, Pseudotrunk, Resurrection plant


2021 ◽  
Vol 11 ◽  
Author(s):  
Fenggang Yu ◽  
Nicholas L. Syn ◽  
Yanan Lu ◽  
Qing Yun Chong ◽  
Junyun Lai ◽  
...  

Epstein-Barr virus (EBV)—the prototypical human tumor virus—is responsible for 1–2% of the global cancer burden, but divergent strains seem to exist in different geographical regions with distinct predilections for causing lymphoid or epithelial malignancies. Here we report the establishment and characterization of Yu103, an Asia Pacific EBV strain with a highly remarkable provenance of being derived from nasopharyngeal carcinoma biopsy but subsequently propagated in human B-lymphoma cells and xenograft models. Unlike previously characterized EBV strains which are either predominantly B-lymphotropic or epitheliotropic, Yu103 evinces an uncanny capacity to infect and transform both B-lymphocytes and nasopharyngeal epithelial cells. Genomic and phylogenetic analyses indicated that Yu103 EBV lies midway along the spectrum of EBV strains known to drive lymphomagenesis or carcinogenesis, and harbors molecular features which likely account for its unusual properties. To our knowledge, Yu103 EBV is currently the only EBV isolate shown to drive human nasopharyngeal carcinoma and B-lymphoma, and should therefore provide a powerful novel platform for research on EBV-driven hematological and epithelial malignancies.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5300
Author(s):  
Terry A. Gates ◽  
Khishigjav Tsogtbaatar ◽  
Lindsay E. Zanno ◽  
Tsogtbaatar Chinzorig ◽  
Mahito Watabe

We describe a new iguanodontian ornithopod,Choyrodon barsboldigen. et sp. nov. from the Albian-aged Khuren Dukh Formation of Mongolia based on several partial skeletons interpreted to represent a subadult growth stage based on osteohistological features. This new taxon is diagnosed by many autapomorphies of the maxilla, nasal, lacrimal, opisthotic, predentary, and surangular.Choyrodondisplays an unusual combination of traits, possessing an open antorbital fenestra (a primitive ornithopod trait) together with derived features such as a downturned dentary and enlarged narial fenestra. Histological imaging suggests that the type specimen ofChoyrodonwould have been a subadult at the time of death. Phylogenetic analysis of two different character matrices do not positChoyrodonto be the sister taxon or to be more primitive than the iguanodontianAltirhinus kurzanovi, which is found in the same formation. The only resolved relationship of this new taxon is that it was hypothesized to be a sister-taxon with the North American speciesEolambia caroljonesa. Though discovered in the same formation andChoyrodonbeing smaller-bodied thanAltirhinus, it does not appear that the former species is an ontogimorph of the latter. Differences in morphology and results of the phylogenetic analyses support their distinction although more specimens of both species will allow better refinement of their uniqueness.


Sign in / Sign up

Export Citation Format

Share Document