scholarly journals A novel transposable element based authentication protocol for Drosophila cell lines

Author(s):  
Daniel Mariyappa ◽  
Douglas B Rusch ◽  
Shunhua Han ◽  
Arthur Luhur ◽  
Danielle Overton ◽  
...  

Abstract Drosophila cell lines are used by researchers to investigate various cell biological phenomena. It is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and intraspecies cross-contamination. Prolonged culturing can lead to introduction of large- and small-scale genomic changes. These factors, therefore, make it imperative that methods to authenticate Drosophila cell lines are developed to ensure reproducibility. Mammalian cell line authentication is reliant on short tandem repeat (STR) profiling, however the relatively low STR mutation rate in D. melanogaster at the individual level is likely to preclude the value of this technique. In contrast, transposable elements (TE) are highly polymorphic among individual flies and abundant in Drosophila cell lines. Therefore, we investigated the utility of TE insertions as markers to discriminate Drosophila cell lines derived from the same or different donor genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the genome-wide distribution of a limited number of diagnostic TE families. We determined the distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2, CME W1 Cl.8+, and OSS Drosophila cell lines. Two independent downstream analyses of the NGS data yielded similar clustering of these cell lines. Double-blind testing of the protocol reliably identified various Drosophila cell lines. In addition, our data indicate minimal changes with respect to the genome-wide distribution of these five TE families when cells are passaged for at least 50 times. The protocol developed can accurately identify and distinguish the numerous Drosophila cell lines available to the research community, thereby aiding reproducible Drosophila cell culture research.

2021 ◽  
Author(s):  
Daniel Mariyappa ◽  
Douglas B. Rusch ◽  
Shunhua Han ◽  
Arthur Luhur ◽  
Danielle Overton ◽  
...  

Drosophila cell lines are used by researchers to investigate various cell biological phenomena. It is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and intraspecies cross-contamination. Prolonged culturing can lead to introduction of large- and small-scale genomic changes. These factors, therefore, make it imperative that methods to authenticate Drosophila cell lines are developed to ensure reproducibility. Mammalian cell line authentication is reliant on short tandem repeat (STR) profiling, however the relatively low STR mutation rate in D. melanogaster at the individual level is likely to preclude the value of this technique. In contrast, transposable elements (TE) are highly polymorphic among individual flies and abundant in Drosophila cell lines. Therefore, we investigated the utility of TE insertions as markers to discriminate Drosophila cell lines derived from the same or different donor genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the genome-wide distribution of a limited number of diagnostic TE families. We determined the distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2, CME W1 Cl.8+, and OSS Drosophila cell lines. Two independent downstream analyses of the NGS data yielded similar clustering of these cell lines. Double-blind testing of the protocol reliably identified various Drosophila cell lines. In addition, our data indicate minimal changes with respect to the genome-wide distribution of these five TE families when cells are passaged for at least 50 times. The protocol developed can accurately identify and distinguish the numerous Drosophila cell lines available to the research community, thereby aiding reproducible Drosophila cell culture research.


Genetics ◽  
2021 ◽  
Author(s):  
Shunhua Han ◽  
Preston J Basting ◽  
Guilherme B Dias ◽  
Arthur Luhur ◽  
Andrew C Zelhof ◽  
...  

Abstract Cell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabelling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of LTR retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome sequencing data (called ngs_te_mapper2), which revealed loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.


2021 ◽  
Author(s):  
Shunhua Han ◽  
Preston J. Basting ◽  
Guilherme Dias ◽  
Arthur Luhur ◽  
Andrew C. Zelhof ◽  
...  

ABSTRACTCell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabelling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of LTR retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome shotgun sequencing data (called ngs_te_mapper2), which revealed copy-neutral loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 912-912
Author(s):  
Fumihiko Nakao ◽  
Takuji Yamauchi ◽  
Yuichiro Semba ◽  
Jumpei Nogami ◽  
Koichi Akashi ◽  
...  

The BCL-2 protein family plays a key role in leukemogenesis via counteracting proapoptotic signals, thereby enhancing leukemia cell survival. Venetoclax, a selective BCL-2 inhibitor, has been proven effective against AML in combination with hypomethylating agents. Since MCL1, another anti-apoptotic protein, is reportedly more abundant than BCL-2 in AML cells and associated with resistance to chemotherapy, development of clinical-grade MCL1 inhibitors has been highly regarded. In fact, a series of MCL1 inhibitors are currently being tested in clinical trials. While relationships between metabolic condition in mitochondria and sensitivity to Venetoclax have been proposed in recent studies, molecular mechanisms underlying MCL1 inhibitor resistance are not well understood. To identify genes/pathways whose loss induce MCL1 inhibitor resistance in AML cells, we performed genome-wide CRISPR-Cas9 screens using a mouse AML cell line in the presence or absence of s63845, a MCL1 inhibitor (Kotschy et al. Nature 2016). To establish AML cell lines with a relatively clean genetic background, we first established AML in mice by transducing the MLL/AF9 leukemia oncogene into mouse bone marrow stem/progenitor cells ex vivo, followed by serial transplants (Yamauchi et al. Cancer Cell 2018). We then harvested AML cells from leukemic mice and established AML cell lines with normal karyotype and intact Trp53 activity. We then performed genome-wide CRISPR-Cas9 screens in the presence or absence of s63845, followed by a second screen with a small-scale library targeting genes that were negatively- or positively-selected upon s63845 treatment in the primary screen. Genes relevant for S63845 resistance were identified using MAGeK MLE (Li et al. Genome Biology 2015) and DrugZ (Colic et al. BioRxiv 2019) programs. Single-guide RNAs (sgRNAs) targeting intrinsic pro-apoptotic genes, such as Bak1, Casp9 and Apaf1, were enriched exclusively in the presence of s63845, attesting to the validity of our experiment. To identify genes relevant to s63845 resistance, we focused on the genes whose sgRNAs were enriched exclusively upon s63845 treatment. We found that loss of Me2, which encodes a mitochondrial malic enzyme that catalyzes the oxidative decarboxylation of malate to pyruvate, promotes AML cell survival only in the presence of s63845, but not in vehicle- or Venetoclax-treated cells. This finding was validated in the second screen, in which 8 independent sgRNAs targeting Me2 were tested. We next generated two independent Me2-null mouse AML cell lines (MLL/AF9 and CALM/AF10) using sgRNAs targeting Me2. Me2-null cells exhibited survival advantage over control cells upon s63845 treatment, revealed by cell proliferation assay. To determine at which step of the apoptotic pathway Me2 deficiency exerts s63845 resistance, we assessed MOMP (mitochondrial outer membrane permeabilization) levels by FACS with or without s63845 treatment. Me2-null cells released less cytochrome C than Me2-wild type (WT) cells upon s63845 treatment. As expected, Me2-null cells exhibited less Annexin-positivity than WT cells upon MCL1 inhibition. Importantly, both mRNA and protein levels of BCL-2 family members, including Bcl-2, Mcl1, Bcl2L1, Bax and Bak1, were comparable regardless of Me2 status. We next performed CRISPR-Cas9 saturation mutagenesis scan of all ME2 exons in the presence or absence of s63845 using Molm-13, a human AML cell line. sgRNAs targeting ME2 coding exons were enriched only in the presence of s63845, while those targeting ME2 3'UTR were unchanged/neutral regardless of experimental conditions. In conclusion, using an unbiased, genome-wide CRISPR/Cas9 screens, we identified Me2, a mitochondrial metabolic enzyme, as a factor relevant for MCL1 inhibitor resistance. Our study may facilitate the understanding of molecular mechanisms underlying acquired resistance to MCL1 inhibitors in AML. Disclosures Akashi: Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding; Sumitomo Dainippon, Kyowa Kirin: Consultancy.


2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Author(s):  
Fatma Kubra Ata ◽  
Serap Yalcin

Background: Chemotherapeutics have been commonly used in cancer treatment. Objective: In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB-231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment. Methods: The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay. Results: Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment. Conclusion: More resistance to chemotherapeutics and altered gene expression profile was shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR in the 3D spheroid forms.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Zeljana Babic ◽  
Amanda Capes-Davis ◽  
Maryann E Martone ◽  
Amos Bairoch ◽  
I Burak Ozyurt ◽  
...  

The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines.


Genome ◽  
2003 ◽  
Vol 46 (4) ◽  
pp. 707-715 ◽  
Author(s):  
K Neumann ◽  
K M Al-Batayneh ◽  
M J Kuiper ◽  
J Parsons-Sheldrake ◽  
M G Tyshenko ◽  
...  

Sequence analysis of a cDNA encoding dihydrofolate reductase (DHFR) from a selected methotrexate-resistant Drosophila melanogaster cell line (S3MTX) revealed a substitution of Gln for Leu at position 30. Although the S3MTX cells were ~1000 fold more resistant to methotrexate (MTX), the karyotype was similar to the parental line and did not show elongated chromosomes. Furthermore, kinetic analysis of the recombinant enzyme showed a decreased affinity for MTX by the mutant DHFR. To determine if the resistance phenotype could be attributed to the mutant allele, Drosophila Dhfr cDNAs isolated from wild type and S3MTX cells were expressed in Chinese hamster ovary (CHO) cells lacking endogenous DHFR. The heterologous insect DHFRs were functional in transgenic clonal cell lines, showing ~400-fold greater MTX resistance in the cell line transfected with the mutant Dhfr than the wild type Dhfr. Resistance to other antifolates in the CHO cells was consistent with the drug sensitivities seen in the respective Drosophila cell lines. ELevated Levels of Dhfr transcript and DHFR in transgenic CHO cells bearing the mutant cDNA were not seen. Taken together, these results demonstrate that a single substitution in Drosophila DHFR alone can confer Levels of MTX resistance comparable with that observed after considerable gene amplification in mammalian cells.Key words: dihydrofolate reductase, methotrexate, drug resistance, point mutation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1814-1814
Author(s):  
Donata Verdelli ◽  
Lucia Nobili ◽  
Katia Todoerti ◽  
Laura Mosca ◽  
Sonia Fabris ◽  
...  

Abstract Abstract 1814 Poster Board I-840 Background The growth and survival of multiple myeloma (MM) cells in the bone marrow microenvironment is regulated by functional complex interactions between the tumor cells and the surrounding bone marrow stromal cells mediated by adhesion molecules and the production of several cytokines of which interleukin-6 (IL-6) has been identified as the most important. Major advances in the investigation of MM biology were made possible by the availability of human myeloma cell lines (HMCLs). The IL-6-dependent CMA-03 cell line was established in our laboratory from a peritoneal effusion of a refractory relapsed MM patient. By gradually decreasing the IL-6 added to the culture, an IL-6-independent variant, CMA-03/06, could be obtained. Aims. To perform a biological and molecular characterization of this novel cell line, and to provide insights into the signaling pathways and target genes involved in the growth and survival of CMA-03/06. Methods. The growth, immunophenotypic, cytogenetic and fluorescence in situ hybridization (FISH) characterization of CMA-03/06 cell line was performed by means of standard procedures. IL-6 production into the culture media was determined using a high sensitivity IL-6 specific ELISA. Genome-wide profiling data were generated by means of Affymetrix GeneChip® Human Mapping 250K Nsp arrays; copy number (CN) alterations were calculated using the DNAcopy Bioconductor package, based on circular binary segmentation method. Global gene expression profiling (GEP) was performed by means of the GeneChip® Human Gene 1.0 ST Arrays (Affymetrix); the supervised analyses were done using the SAM software version 3.0. Results Unlike CMA-03, the addition of IL-6 to the culture medium of CMA-03/06 cells or co-culture with multipotent mesenchymal stromal cells did not induce an increase in CMA-03/06 proliferation. IL-6 was not detected in the supernatants from either CMA-03 or CMA-03/06 cell lines within 48 h, suggesting that the IL-6 independence of CMA03/06 cells is not a result of the development of an autocrine IL-6 loop. Nevertheless, IL-6 induced the activation of STAT3 and STAT1 in both cell lines, even if a slight constitutive STAT3 phosphorylation was found in CMA-03/06. The immunophenotypic analysis showed a significant difference in the expression of three antigens in the 2 cell lines: CD45 was considerably reduced in CMA-03/06 cells, whereas they were found positive for both chains of IL-6 receptor, CD126 and CD130, almost undetectable in CMA-03. Conventional cytogenetic and FISH analyses did not reveal differences between the 2 HMCLs. The genome-wide analysis allowed the identification of about 100 altered chromosomal regions common to both HMCLs, mostly DNA gains. Comparison of CMA-03/06 and CMA-03 cells evidenced a different CN in only 15 small chromosomal regions, 8 of which did not contain any transcript, whereas few genes were located on the other ones. GEP analysis of CMA-03/06 compared with CMA-03 identified 21 upregulated and 47 downregulated genes, many of which particularly relevant for MM biology, mainly involved in cellular signaling, cell cycle, cell adhesion, cell development, regulation of transcription, immunologic, inflammatory or defense activity, apoptosis. None of the genes differentially expressed in CMA-03/06 compared with CMA-03 except 1 were positioned on the chromosomal regions showing a different CN. Finally, CMA-03/06 cell line showed a lower susceptibility to camptothecin-induced apoptosis compared to CMA-03 cells. Conclusions Our data show the IL-6 independence of CMA-03/06 cell line in the absence of an autocrine IL-6 loop; the cells, however, maintain the IL-6 signaling pathway responsiveness. A consistent number of genes particularly relevant for MM biology were found deregulated in CMA-03/06 cell line compared with CMA-03. Furthermore, CMA-03/06 cell line shows an increased resistance to apoptosis. The novel CMA03/06 cell line may thus represent a suitable model for studies investigating molecular mechanisms involved in clonal evolution towards IL-6 and/or stroma-independent growth and survival of myeloma cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document