scholarly journals Changes in Self-reported Energy and Brain Volumes

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 783-783
Author(s):  
Qu Tian ◽  
Andrea Rosso ◽  
Nancy Glynn ◽  
Xiaonan Zhu ◽  
Caterina Rosano

Abstract The brain demands and consumes more energy than any other organ. Lower perceived energy may indicate compromised brain health. Little empirical data exists on the association between perceived energy and brain structure. Neuroimaging was obtained in 300 participants (mean age=83±3 y/o, 40% blacks, 57%women) with repeated self-reported energy measures(scale0-10) in the past decade. Energy decline was computed as rate of change by linear mixed models(-0.06/year). Associations of energy decline with volumes of cognitive (dorsolateral prefrontal cortex, hippocampus) and motor (precentral gyrus, putamen, caudate) areas were examined using linear regression, adjusted for demographics and total gray matter atrophy. A steeper decline in energy was associated with smaller volumes of right putamen (p=0.013) and caudate (p=0.043), a trend in right precentral gyrus (p=0.085), but not in prefrontal cortex or hippocampus. Declining energy by self-report may indicate atrophy localized in subcortical motor areas. Studies to identify the mechanisms underlying these associations are warranted.

2016 ◽  
Vol 113 (52) ◽  
pp. E8492-E8501 ◽  
Author(s):  
Roland G. Benoit ◽  
Daniel J. Davies ◽  
Michael C. Anderson

Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events. Suppressing imagination engaged the right dorsolateral prefrontal cortex, which modulated activation in the hippocampus and in the ventromedial prefrontal cortex (vmPFC). Consistent with the role of the vmPFC in providing access to details that are typical for an event, stronger inhibition of this region was associated with greater forgetting of such details. Suppression further hindered participants’ ability to later freely envision suppressed episodes. Critically, it also reduced feelings of apprehensiveness about the feared scenario, and individuals who were particularly successful at down-regulating fears were also less trait-anxious. Attenuating apprehensiveness by suppressing simulations of feared events may thus be an effective coping strategy, suggesting that a deficiency in this mechanism could contribute to the development of anxiety.


e-Neuroforum ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. A11-A18
Author(s):  
Sabine Windmann ◽  
Grit Hein

Abstract Altruism is a puzzling phenomenon, especially for Biology and Economics. Why do individuals reduce their chances to provide some of the resources they own to others? The answer to this question can be sought at ultimate or proximate levels of explanation. The Social Neurosciences attempt to specify the brain mechanisms that drive humans to act altruistically, in assuming that overtly identical behaviours can be driven by different motives. The research has shown that activations and functional connectivities of the Anterior Insula and the Temporoparietal Junction play specific roles in empathetic versus strategic forms of altruism, whereas the dorsolateral prefrontal cortex, among other regions, is involved in norm-oriented punitive forms of altruism. Future research studies could focus on the processing of ambiguity and conflict in pursuit of altruistic intentions.


2003 ◽  
Vol 89 (2) ◽  
pp. 1067-1077 ◽  
Author(s):  
Ikuo Tanibuchi ◽  
Patricia S. Goldman-Rakic

The mediodorsal nucleus (MD) is the thalamic gateway to the prefrontal cortex, an area of the brain associated with spatial and object working memory functions. We have recorded single-neuron activities from the MD nucleus in monkeys trained to perform spatial tasks with peripheral visual stimuli and a nonspatial task with foveally presented pictures of objects and faces—tasks identical to those we have previously used to map regional specializations in the dorso- and ventro-lateral prefrontal cortex, respectively. We found that MD neurons exhibited categorical specificity—either responding selectively to locations in the spatial tasks or preferentially to specific representations of faces and objects in the nonspatial task. Spatially tuned neurons were located in parts of the MD connected with the dorsolateral prefrontal cortex while neurons responding to the identity of stimuli mainly occupied more ventral positions in the nucleus that has its connections with the inferior prefrontal convexity. Neuronal responses to auditory stimuli were also examined, and vocalization sensitive neurons were found in more posterior portions of the MD. We conclude that MD neurons are dissociable by their spatial and nonspatial coding properties in line with their cortical connections and that the principle of information segregation in cortico-cortical pathways extends to the “association” nuclei of the thalamus.


1997 ◽  
Vol 170 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Ross M. G. Norman ◽  
A. K. Malla ◽  
S. L. Morrison-Stewart ◽  
E. Helmes ◽  
P. C. Williamson ◽  
...  

BackgroundOn the basis of Liddle's three-syndrome model of schizophrenia, it was predicted that: (1) symptoms of psychomotor poverty would be particularly correlated with impaired performance on neuropsychological tests likely to reflect functioning of the dorsolateral prefrontal cortex; (2) disorganisation would be particularly correlated with impaired performance on tests sensitive to medio-basal prefrontal functioning; and (3) reality distortion would be particularly correlated with measures sensitive to temporal lobe functioning.MethodThe above hypotheses were tested on 87 subjects with a confirmed diagnosis of schizophrenia. Patients' symptoms were scored for each of the three syndromes. Patients completed six neuropsychological tests designed to measure impairment in specific areas of the brain.ResultsThere was no support for the first two hypotheses. There was, however, evidence of a specific relationship between reality distortion and neuropsychological performance usually considered to be related to left temporal lobe functioning.ConclusionsAlthough not directly supporting the first two hypotheses; the results are, in general, consistent with there being different cortical-subcortical circuits associated with each of psychomotor poverty and disorganisation. Temporal lobe functioning appears to have particular significance for the reality distortion syndrome.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriyuki Narita ◽  
Kazunobu Kamiya ◽  
Sunao Iwaki ◽  
Tomohiro Ishii ◽  
Hiroshi Endo ◽  
...  

BackgroundThe differences in the brain activities of the insular and the visual association cortices have been reported between oral and manual stereognosis. However, these results were not conclusive because of the inherent differences in the task performance-related motor sequence conditions. We hypothesized that the involvement of the prefrontal cortex may be different between finger and oral shape discrimination. This study was conducted to clarify temporal changes in prefrontal activities occurring in the processes of oral and finger tactual shape discrimination using prefrontal functional near-infrared spectroscopy (fNIRS).MethodsSix healthy right-handed males [aged 30.8 ± 8.2 years (mean ± SD)] were enrolled. Measurements of prefrontal activities were performed using a 22-channel fNIRS device (ETG-100, Hitachi Medical Co., Chiba, Japan) during experimental blocks that included resting state (REST), nonsense shape discrimination (SHAM), and shape discrimination (SHAPE).ResultsNo significant difference was presented with regard to the number of correct answers during trials between oral and finger SHAPE discrimination. Additionally, a statistical difference for the prefrontal fNIRS activity between oral and finger shape discrimination was noted in CH 1. Finger SHAPE, as compared with SHAM, presented a temporally shifting onset and burst in the prefrontal activities from the frontopolar area (FPA) to the orbitofrontal cortex (OFC). In contrast, oral SHAPE as compared with SHAM was shown to be temporally overlapped in the onset and burst of the prefrontal activities in the dorsolateral prefrontal cortex (DLPFC)/FPA/OFC.ConclusionThe prefrontal activities temporally shifting from the FPA to the OFC during SHAPE as compared with SHAM may suggest the segregated serial prefrontal processing from the manipulation of a target image to the decision making during the process of finger shape discrimination. In contrast, the temporally overlapped prefrontal activities of the DLPFC/FPA/OFC in the oral SHAPE block may suggest the parallel procession of the repetitive involvement of generation, manipulation, and decision making in order to form a reliable representation of target objects.


Author(s):  
Mohammed Isam Al-Hiyali ◽  
Asnor Juraiza Ishak ◽  
Hafiz Harun ◽  
Siti Anom Ahmad ◽  
Wan Aliaa Sulaiman

Background: This study aims to investigate the effects of visual neurofeedback stimulation on the brain activity in overweight cases. The neuroscience studies indicated the personal decision about eating under the impact of environmental factors such as (visually, smelling, tasting) is related to neural activity of the prefrontal lobe of the brain. Therefore, there were many attempts to modify the food intake behavior in overweight cases through the stimulation of the prefrontal cortex. However, the empirical viewing of EEG-neurofeedback experiments has not explicated the details about the effect of the EEG-NF, the specificity of positive treatment effects remains in a challenging scope.Methods: This study is a cue-exposure EEG-NF experiment to verify the hypothesis of effecting the EEG-NF on the electrical activity of PFC and modifying the general symptoms of food intake behavior in overweight cases. Twenty-four individuals were recruited as participants for this study. These participants were assigned randomly into two groups; the EX-Group (N=12) enrolled in 8 sessions of the EEG-NF experiment, and the C-Group (N=12) was listed in no EEG-NF sessions. The participants provided researchers with a self-report questionnaire relating to their observation of general symptoms of food intake behavior, and EEG signals recordings into the pre and posts stimulation phase. The power spectral density (PSD) method was applied for EEG parameters extraction.Results: The results of a two-way analysis of variance (ANOVA) explained that a significant variation in variables between the two groups after the EEG-NF experiment. The analysis of the quantitative variables indicated that the effect of EEG-NF experiment was a significant decrement in EEG power bands which significantly influenced changing the median of self-report questionnaire responses that is related to general symptoms of food intake behavior.Conclusions: This study provides preliminary support for the therapeutic potential of EEG-NF experiment that targets the prefrontal cortex, to influence neural processes underlying food intake behavior in overweight cases.


2021 ◽  
Vol 10 ◽  
pp. 2016
Author(s):  
Ali Zare ◽  
Alireza Ghanbari ◽  
Mohammad Javad Hoseinpour ◽  
Mahdi Eskandarian Boroujeni ◽  
Alimohammad Alimohammadi ◽  
...  

Background: Methamphetamine (MA), is an extremely addictive stimulant that adversely affects the central nervous system. Accumulating evidence indicates that molecular mechanisms such as oxidative stress, apoptosis, and autophagy are involved in the toxicity of MA. Considering experimental animal studies exhibiting MA-induced neurotoxicity, the relevance of these findings needs to be evidently elucidated in human MA users. It is generally assumed that multiple chemical substances released in the brain following MA-induced metabolic activation are primary factors underlying damage of neural cells. Hence, this study aimed to investigate the role of autophagy and apoptosis as well as oxidative stress in the brain of postmortem MA-induced toxicity. Materials and Methods: In this study, we determine the gene expression of autophagy and apoptosis, including BECN1, MAP1ALC3, CASP8, TP53, and BAX genes in ten healthy controls and ten chronic users of MA postmortem dorsolateral prefrontal cortex (DLPFC) by real-time polymerase chain reaction. Also, we applied immunohistochemistry in formalin-fixed and paraffin-embedded human brain samples to analyze brain-derived neurotrophic factor (BDNF). Also, spectrophotometry was performed to measure glutathione (GSH) content. Results: The expression level of apoptotic and autophagic genes (BECN1, MAP1ALC3, CASP8, TP53, and BAX) were significantly elevated, while GSH content and BDNF showed substantial reductions in DLPFC of chronic MA users. Discussion: Our data showed that MA addiction provokes transduction pathways, namely apoptosis and autophagy, along with oxidative mechanisms in DLPFC. Also, MA induces multiple functional and structural perturbations in the brain, determining its toxicity and possibly contributing to neurotoxicity. [GMJ.2021;10:e2016]


Author(s):  
MORTEN L. KRINGELBACH ◽  
JOHN G. GEAKE

Imagination is believed to be made-up of two components. The first one suggests that acts of imagination engage similar networks in the brain to those used for motor and sensory processing during interactions with the real world. The second component purports that the selection processes used in the subcomponents of imagination such as mindedness, anticipation, and counterfactual thinking rely on the subcortical and cortical networks of the brain which consist of components such as the cerebellum, orbitofrontal cortex, dorsolateral prefrontal cortex, and cingulate cortex. This chapter reviews the emerging literature on neuroimaging of various components of imagination. Imaging and other neuroscientific techniques offer various possibilities in the architecture of the imaginative mind. It shows how the neural bases of the imaginative activities are organized. Imaginative processes are distributed activities which recruit several brain areas and networks. These complex relations within and between these various networks are illustrated by the Dynamic Workspace Hypothesis. However it is expected that the precise functional roles of these interacting networks can be accurately defined through the advent of brain scanning and neuroimaging, particularly through the technical breakthroughs imagined in a Coda.


Author(s):  
Miriam T. Ashford ◽  
John Neuhaus ◽  
Chengshi Jin ◽  
Monica R. Camacho ◽  
Juliet Fockler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document