scholarly journals Integrated processing method for microseismic signal based on deep neural network

Author(s):  
Hang Zhang ◽  
Chunchi Ma ◽  
Yupeng Jiang ◽  
Tianbin Li ◽  
Veronica Pazzi ◽  
...  

Summary Denoising and onset time picking of signals are essential before extracting source information from collected seismic/microseismic data. We proposed an advanced deep dual-tasking network (DDTN) that integrates these two procedures sequentially to achieve the optimal performance. Two homo-structured encoder-decoder networks with specially designed structures and parameters are connected in series for handling the denoising and detection of microseismic signals. Based on the similarity of data types, the output of the denoising network will be imported into the detection network to obtain labels for the signal duration. The procedures of denoising and duration detection can be completed in an integrated way, where the denoised signals can improve the accuracy of onset time picking. Results show that the method has a good performance for the denoising of microseismic signals that contain various types and intensities of noise. Compared with existing methods, DDTN removes the noise with a minor waveform distortion. It is ideal for recovering the microseismic signal while maintaining a good capacity for onset time picking when the signal-to-noise ratio is low. Based on that, the second network can detect a more accurate duration of microseismic signals and thus obtain more accurate onset time. The method has great potential to be extended to the study of exploration seismology and earthquakes.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dennis Kupitz ◽  
Heiko Wissel ◽  
Jan Wuestemann ◽  
Stephanie Bluemel ◽  
Maciej Pech ◽  
...  

Abstract Background The introduction of hybrid SPECT/CT devices enables quantitative imaging in SPECT, providing a methodological setup for quantitation using SPECT tracers comparable to PET/CT. We evaluated a specific quantitative reconstruction algorithm for SPECT data using a 99mTc-filled NEMA phantom. Quantitative and qualitative image parameters were evaluated for different parametrizations of the acquisition and reconstruction protocol to identify an optimized quantitative protocol. Results The reconstructed activity concentration (ACrec) and the signal-to-noise ratio (SNR) of all examined protocols (n = 16) were significantly affected by the parametrization of the weighting factor k used in scatter correction, the total number of iterations and the sphere volume (all, p < 0.0001). The two examined SPECT acquisition protocols (with 60 or 120 projections) had a minor impact on the ACrec and no significant impact on the SNR. In comparison to the known AC, the use of default scatter correction (k = 0.47) or object-specific scatter correction (k = 0.18) resulted in an underestimation of ACrec in the largest sphere volume (26.5 ml) by − 13.9 kBq/ml (− 16.3%) and − 7.1 kBq/ml (− 8.4%), respectively. An increase in total iterations leads to an increase in estimated AC and a decrease in SNR. The mean difference between ACrec and known AC decreased with an increasing number of total iterations (e.g., for 20 iterations (2 iterations/10 subsets) = − 14.6 kBq/ml (− 17.1%), 240 iterations (24i/10s) = − 8.0 kBq/ml (− 9.4%), p < 0.0001). In parallel, the mean SNR decreased significantly from 2i/10s to 24i/10s by 76% (p < 0.0001). Conclusion Quantitative SPECT imaging is feasible with the used reconstruction algorithm and hybrid SPECT/CT, and its consistent implementation in diagnostics may provide perspectives for quantification in routine clinical practice (e.g., assessment of bone metabolism). When combining quantitative analysis and diagnostic imaging, we recommend using two different reconstruction protocols with task-specific optimized setups (quantitative vs. qualitative reconstruction). Furthermore, individual scatter correction significantly improves both quantitative and qualitative results.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091477
Author(s):  
Hongwei Zhao ◽  
Zichun Zhang ◽  
Xiaozhu Shi ◽  
Yihui Yin

The augmentation navigation system based on multi-source information fusion can significantly improve position accuracy, and the multi-source information is usually transmitted through VHF Data Broadcast . Aiming at the burst characteristics of VHF Data Broadcast, this article proposed a novel demodulation algorithm based on open-loop structure. When a VHF Data Broadcast burst is detected, the timing recovery should be finished first, and the value of cross-correlation between the timing-recovered signal and the local training symbol is calculated to complete the frame synchronization. Then, the data-aided and non-data-aided algorithms are used to estimate the frequency offset. Finally, the phase offset is estimated and the carrier synchronization is accomplished. The simulation results demonstrate that the proposed algorithm can quickly accomplished carrier synchronization without using feedback-loop structure, and the bit error rate is less than 10−4 when the signal-to-noise ratio is greater than 17 dB, which satisfy the requirement of receiving VHF Data Broadcast signals in augmentation navigation system. Therefore, the proposed algorithm can be used for receiving VHF Data Broadcast signals.


Author(s):  
Bradley T. Martin ◽  
Tyler K. Chafin ◽  
Marlis R. Douglas ◽  
John S. Placyk ◽  
Roger D. Birkhead ◽  
...  

AbstractModel-based approaches that attempt to delimit species are hampered by computational limitations as well as the unfortunate tendency by users to disregard algorithmic assumptions. Alternatives are clearly needed, and machine-learning (M-L) is attractive in this regard as it functions without the need to explicitly define a species concept. Unfortunately, its performance will vary according to which (of several) bioinformatic parameters are invoked. Herein, we gauge the effectiveness of M-L-based species-delimitation algorithms by parsing 64 variably-filtered versions of a ddRAD-derived SNP dataset involving North American box turtles (Terrapene spp.). Our filtering strategies included: (A) minor allele frequencies (MAF) of 5%, 3%, 1%, and 0% (=none), and (B) maximum missing data per-individual/per-population at 25%, 50%, 75%, and 100% (=none). We found that species-delimitation via unsupervised M-L impacted the signal-to-noise ratio in our data, as well as the discordance among resolved clades. The latter may also reflect biogeographic history, gene flow, incomplete lineage sorting, or combinations thereof (as corroborated from previously observed patterns of differential introgression). Our results substantiate M-L as a viable species-delimitation method, but also demonstrate how commonly observed patterns of phylogenetic discord can seriously impact M-L-classification.


1976 ◽  
Vol 231 (5) ◽  
pp. 1337-1342 ◽  
Author(s):  
RS Alexander

Loops of rat bladder were stretched between pins in vitro, supported by a clamp that could be suddenly shortened by activation of a solenoid to achieve a quick release of tension. The series elasticity measured in this fashion was found to follow an exponential course and to be modified by the rate of release, indicating a minor viscous component. Tissue length decreased and series elastic stiffness appeared to increase with muscle contraction, but no alteration in series elasticity was evident when the data were related to the tension existing in the tissue at the moment of quick release. Inactivation of the contractile system by removing calcium ion with ethylene glycol-bis-(beta-aminoethylether)-N,N'-tetraacetate (EGTA) similarly did not alter series elasticity when it was related to the tension existing in the tissue. Series elasticity during the stress relaxation following a stretch, and during the contracting and relaxing phases of rhythmic contractions, was also determined by tissue tension. The conclusion drawn is that contractile cross bridges do not contribute to the series elasticity measured in bladder tissue.


2019 ◽  
Vol 12 (12) ◽  
pp. 6273-6301
Author(s):  
Edward Malina ◽  
Haili Hu ◽  
Jochen Landgraf ◽  
Ben Veihelmann

Abstract. Retrievals of methane isotopologues have the potential to differentiate between natural and anthropogenic methane sources types, which can provide much needed information about the current global methane budget. We investigate the feasibility of retrieving the second most abundant isotopologue of atmospheric methane (13CH4, roughly 1.1 % of total atmospheric methane) from the shortwave infrared (SWIR) channels of the future Sentinel-5/ultra-violet, visible, near-infrared, shortwave infrared (UVNS) and current Copernicus Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) instruments. With the intended goal of calculating the δ13C value, we assume that a δ13C uncertainty of better than 1 ‰ is sufficient to differentiate between source types, which corresponds to a 13CH4 uncertainty of <0.02 ppb. Using the well-established information content analysis techniques and assuming clear-sky, non-scattering conditions, we find that the SWIR3 (2305–2385 nm) channel on the TROPOMI instrument can achieve a mean uncertainty of <1 ppb, while the SWIR1 channel (1590–1675 nm) on the Sentinel-5 UVNS instrument can achieve <0.68 ppb or <0.2 ppb in high signal-to-noise ratio (SNR) cases. These uncertainties combined with significant spatial and/or temporal averaging techniques can reduce δ13C uncertainty to the target magnitude or better. However, we find that 13CH4 retrievals are highly sensitive to errors in a priori knowledge of temperature and pressure, and accurate knowledge of these profiles is required before 13CH4 retrievals can be performed on TROPOMI and future Sentinel-5/UVNS data. In addition, we assess the assumption that scattering-induced light path errors are cancelled out by comparing the δ13C values calculated for non-scattering and scattering scenarios. We find that there is a minor bias in δ13C values from scattering and non-scattering retrievals, but this is unrelated to scattering-induced errors.


Clay Minerals ◽  
1986 ◽  
Vol 21 (2) ◽  
pp. 201-210 ◽  
Author(s):  
P. Cambier

AbstractLow crystallinity of unsubstituted goethites is characterized by a small coherently diffracting domain, which may be accompanied by another type of disorder revealed by broader IR half-absorbance band widths. Inside the unit cell, the H-bond is weaker, which increases the OH stretching frequency and lowers the bending frequencies. Also, an increase in parameter a and a change in Fe-O bonds, which might correspond to a minor tilting of octahedra, occur along with a lowering of the frequency of the 630 cm−1 band.


Author(s):  
Aristotelis Agianniotis ◽  
Alexander Rachev ◽  
Nikos Stergiopulos

We developed a structure-based model of the arterial wall to explain the effect of dissolution of smooth muscle cells (SMC) on the mechanical behavior of the artery and to obtain a better understanding of the interaction between the different wall components. Pressure-radius curves and dimensions of zero-stress configuration were measured in 5 control and 5 decellularized porcine common carotid arteries. We found that 13% of elastin is associated with the smooth muscle cells (SMC) whereas the rest 87% is associated with the extracellular matrix (ECM). Further, we found that the elastin related to SMC and the one related to the ECM have circumferential prestretches of 2.04 and 0.89, respectively. We conclude that the majority of elastic in the media is linked to ECM and is under compression at zero load, whereas a minor part is linked to VSM and is under tension (SMC related) at its zero load state. Upon chemical dissolution of the muscle cells elastin in series with SMC do not bear load allowing elastin connected to ECM to release its compressive prestress, leading to the expansion of the artery.


2013 ◽  
Vol 347-350 ◽  
pp. 1328-1332
Author(s):  
Xiao Dong Cai ◽  
Zhi Gang Liu

The signal processing circuit based on FPGA was proposed in the paper, carrying out the function such as programmable signal amplification, adaptive filtering and so on. Among them, the programmable amplifier module was achieved with the programmable gain amplifier in series; Adaptive filter module was implemented with the Butterworth second-order active filter, to change the cutoff frequency of the filter by changing the potentiometer resistance. Experimental results show that the signal processing circuit was applied in the infrared optical system improving the signal to noise ratio of the image effectively.


2008 ◽  
Vol 58 (3) ◽  
pp. 555-561 ◽  
Author(s):  
P. Zima ◽  
J. Makinia ◽  
M. Swinarski ◽  
K. Czerwionka

This paper presents effects of dispersion on predicting longitudinal ammonia concentration profiles in activated sludge bioreactor located at “Wschod” WWTP in Gdansk. The aim of this study was to use the one-dimensional advection-dispersion Equation (ADE) to simulate the flow conditions (based on the inert tracer concentrations in selected points) and longitudinal profile of reactive pollutant (based on the ammonia concentration profiles in selected points). The simulation results were compared with the predictions obtained using a traditional “tanks-in-series” (TIS) approach, commonly used in designing biological reactors. The use of dispersion coefficient calculated from an empirical formula resulted in substantial differences in the tracer concentration distributions in two sampling points in the bioreactor. Simulations using the one-dimensional ADE and TIS model, with the nitrification rate incorporated as the source term, revealed that the hydraulic model plays a minor role compared to the biochemical transformations in predicting the longitudinal ammonia concentration profiles.


2019 ◽  
Author(s):  
Kuaikuai Duan ◽  
Rogers F. Silva ◽  
Jiayu Chen ◽  
Dongdong Lin ◽  
Vince D. Calhoun ◽  
...  

ABSTRACTIndependent component analysis has been widely applied to brain imaging and genetic data analyses for its ability to identify interpretable latent sources. Nevertheless, leveraging source sparsity in a more granular way may further improve its ability to optimize the solution for certain data types. For this purpose, we propose a sparse infomax algorithm based on nonlinear Hoyer projection, leveraging both sparsity and statistical independence of latent sources. The proposed algorithm iteratively updates the unmixing matrix by infomax (for independence) and the sources by Hoyer projection (for sparsity), feeding the sparse sources back as input data for the next iteration. Consequently, sparseness propagates effectively through infomax iterations, producing sources with more desirable properties. Simulation results on both brain imaging and genetic data demonstrate that the proposed algorithm yields improved pattern recovery, particularly under low signal-to-noise ratio conditions, as well as improved sparseness compared to traditional infomax.


Sign in / Sign up

Export Citation Format

Share Document