scholarly journals The value of commercial fish size distribution recorded at haul by haul compared to trip by trip

Author(s):  
Kristian S Plet-Hansen ◽  
François Bastardie ◽  
Clara Ulrich

Abstract Data from commercial fishing vessels may enhance the range of observations available for monitoring the marine environment. However, effort and catch data provide information on fish distribution with a bias due to spatial targeting and selectivity. Here, we measured the shortcomings of standard fishery-dependent data and advocate for the utilization of more precise datasets indirectly collected by the commercial fishery. Data from a Danish traceability system, which records size of commercial fish at the haul level, are held against the set-up of current eLog and sales slips’ data collected for the Danish fisheries. We showed that the most accurate mapping of the spatial distribution of catches per size group is not only possible through size records collected at the haul level but also by high resolution on fishing effort data. In Europe, the regulation to land all catches with a quota or minimum size limit, including unwanted, has increased the focus on avoidance and discards; we show the potential of such data sources to inform on fish abundance and distribution, especially of importance where fishery-dependent data are the only source of information.

Author(s):  
Evgeniy Vyacheslavovich Kulikov ◽  
Saule Zhangirovna Assylbekova ◽  
Kuanysh Baibulatovich Isbekov

The article deals with the problems of regulating commercial fishing in the water bodies of Kazakhstan. Analysis of data on fishing in large reservoirs of the Republic of Kazakhstan shows that along with natural changes in the fish stocks (when the water level in the reservoir decreases), the fishing intensity makes the greatest impact on the state of fish stocks. Today a pre-existing limiter as the fishing regime (the number of fishing gear and fishermen) completely has fallen out of the fishing control mechanisms. According to some reports, the catch of fish with fishing gear available to fishermen, increases the established limits by 1.5–2 times. Thus, the possible catch significantly exceeds the registered (official) catch. It is proposed to use the regulation of the fishing regime (the number of fishing gear, fishing vessels, fishermen) as a measure that determines the limits of safe effort and to limit unrecorded fishing on water bodies. The number of fishermen in the pond should not only meet the criteria for safe effort, but also allow fishing organizations to conduct profitable fishing. The calculation of the maximum allowable number of fishing performance indicators (limit reference points of fishing effort) are given.


1990 ◽  
Vol 47 (6) ◽  
pp. 1116-1121 ◽  
Author(s):  
M. V. Abrahams ◽  
M. C. Healey

We estimated the catch rates of individual fishing vessels within the British Columbia salmon troll fleet from the data of a 7-yr log book program. Catch rates varied considerably among vessels. A portion of the variation could be attributed to environmental variation. However, there were also significant differences in competitive ability among vessels. The top ranked vessels had a catch rate 3.6 times that of the lowest ranked vessels. Top ranked vessels distributed their fishing effort among more fishing areas than bottom ranked vessels, but were also more successful at catching fish when fishing in the same areas as bottom ranked vessels. This information, through an application of the ideal free distribution theory, can be used to develop a model that will describe the expected relationship between vessel distribution, vessel catch rate, and fish distribution, potentially allowing vessel distributions to be used as a tool for assessing fish stocks.


Author(s):  
Saule Zhangirovna Asylbekova ◽  
Kuanysh Baibulatovich Isbekov ◽  
Evgeniy Vyacheslavovich Kulikov

The hydrological regime of water reservoirs in different years has a decisive impact on the abundance of commercial fish stocks and the quality of ichthyocenoses. In this connection in 2015-2016 there was conducted a retrospective analysis and ranking of hydrological regime impact on these factors. The paper gives evaluation of catches and fish stocks under different scenarios of water availability in the main fishing ponds of the Republic of Kazakhstan that give about 80% of the annual fish catch of the country (except the Caspian Sea). There were analyzed 2000 factors of hydrological regime (water level, annual discharge) and 1845 factors of fishing stocks (catches, abundance, fish biomass). The paper determines the critical characteristics of water availability for fish stocks. There have been proposed a number of administrative decisions and actions in case if water content would approach to the critical level. Among them: limitation of fish catches in the following year; widening zones restricted for fishing; intensification of safety measures of the fish young in residual ponds during arid periods; introduction of catch standards for a unit of fishing effort in low-water years, high-water years and years with normal water level in rivers.


Author(s):  
G. Diez ◽  
L. Arregi ◽  
M. Basterretxea ◽  
E. Cuende ◽  
I. Oyarzabal

Abstract The changes in abundance and biodiversity of deep-sea fish fauna are described based on an annual deep-water longline survey with data collected during the period 2015–2019 in the Basque Country continental Slope (ICES Division 8c). The sampling scheme included hauls in four 400 m strata, from 650–2250 m deep. The DST sensors installed in the main line have allowed us to set an accurate soak time for each haul, and they were used to calculate fishing effort and CPUE by haul. The catchability of the fishing gear indicated that 15% of the total hooks deployed in the five-year period were able to fish, and that the bottom longline was very effective in fishing a wide number of different species in all depth ranges. The fishing gear caught 14 different species of sharks (13 deepwater and one pelagic), two chimaeras and nine teleosts. The abundance and biomass registered on the hooks attached to the bottom were between three and four times higher than in the floating sections, and the highest CPUE and biomass were recorded between 1051–1450 m, from 2015 to 2017, and in the 1451–1850 m strata, but they do not show any clear trend throughout the five years of the series.


2021 ◽  
Vol 7 (9) ◽  
pp. eabe3470
Author(s):  
Jorge P. Rodríguez ◽  
Juan Fernández-Gracia ◽  
Carlos M. Duarte ◽  
Xabier Irigoien ◽  
Víctor M. Eguíluz

Fisheries in waters beyond national jurisdiction (“high seas”) are difficult to monitor and manage. Their regulation for sustainability requires critical information on how fishing effort is distributed across fishing and landing areas, including possible border effects at the exclusive economic zone (EEZ) limits. We infer the global network linking harbors supporting fishing vessels to fishing areas in high seas from automatic identification system tracking data in 2014, observing a modular structure, with vessels departing from a given harbor fishing mostly in a single province. The top 16% of these harbors support 84% of fishing effort in high seas, with harbors in low- and middle-income countries ranked among the top supporters. Fishing effort concentrates along narrow strips attached to the boundaries of EEZs with productive fisheries, identifying a free-riding behavior that jeopardizes efforts by nations to sustainably manage their fisheries, perpetuating the tragedy of the commons affecting global fishery resources.


1975 ◽  
Vol 32 (12) ◽  
pp. 2520-2524
Author(s):  
William F. Sinclair ◽  
R. W. Morley

Commercial and recreational fisheries managers often develop catch and effort estimates from information gathered in location or on-site surveys. However, a limited on-site sample cannot produce unbiased estimates of fishing effort or socioeconomic traits of the anglers unless weighting procedures are adopted to account for the varying frequencies of fishing of the fishermen. The corrective procedure involves establishing the relative probability of capturing a fisherman in the sample, then weighting the number of contacts with anglers in each frequency of use category. Unless information on the probability of including particular fishermen and fishing vessels in the sample is available the sample must be drawn with replacement.


2021 ◽  
Author(s):  
Leslie Roberson ◽  
Chris Wilcox

Abstract Fisheries bycatch continues to drive the decline of many threatened marine species such as seabirds, sharks, marine mammals, and sea turtles. Management frameworks typically address bycatch with fleet-level controls on fishing. Yet, individual operators differ in their fishing practices and efficiency at catching fish. If operators have differing abilities to target species, they should also have differing abilities to anti-target bycatch species. We analyse variations in threatened species bycatch among individual operators from five industrial fisheries representing different geographic areas, gear types, and target species. The individual vessel is a significant predictor of bycatch for 15 of the 16 species-fishery interactions, including species that represent high or low costs to fishers, or have economic value as potentially targeted byproducts. Encouragingly, we found high performance operators in all five fishing sectors, including gears known for high bycatch mortality globally. These results show the potential to reduce negative environmental impacts of fisheries with incentive-based interventions targeting specific performance groups of individuals. Management of threatened species bycatch Incidental catch of marine animals in fishing gear ("bycatch") has been recognized as a serious problem for several decades. Despite widespread efforts to address it, bycatch remains one of the most pressing issues in fisheries management today, especially for threatened or protected species such as sea turtles, seabirds, elasmobranchs, and marine mammals1,2. The most common approaches to reducing bycatch have been command-and-control measures implemented across the entire fleet or industry, such as technology requirements or total allowable catch for particular bycatch species3,4. These conventional approaches have been far from universally successful, and have often performed worse in practice than models and trials suggested, even when the same approach is translated to a similar fishery5. The Skipper Effect Managing bycatch is a problem of fishing efficiency. Although management frameworks typically treat fishing fleets as a unit, several studies suggest that the skill of individual operators (the "skipper effect") could be a driver of important and unexplained variations in fishing efficiency. A skipper's skill is some combination of managerial ability, experience and knowledge of the environment, ability to respond to rapidly changing information and conditions at sea, and numerous other factors that are difficult to describe or record6. There is ongoing debate about the key components of operator skill and its importance in different contexts, such as different gears or technical advancement of fisheries7–10. Yet, numerous studies show consistent variation in target catch rates among anglers, skippers, or fishing vessels that is not explained by environmental variables or economic inputs7,11−13. This includes technically advanced and homogeneous fleets where a skipper's skill would seemingly be less important14. Previously, the skipper effect has been explored in relation to fishing efficiency and profitability (effort and target catch). However, if fishers have differing abilities to catch species they want, it follows that they would also have variable skill at avoiding unwanted species. Untangling the skipper effect is difficult without very detailed data, which are often not available for target catch and are extremely rare for bycatch. We capitalize on a rare opportunity to compare multiple high-resolution fisheries datasets that have information about both target and bycatch. We use fisheries observer data from five Australian Commonwealth fisheries sectors to answer three key questions: 1) Is there significant and predictable variation among operators in their target to bycatch ratios? We hypothesize that there are characteristics at the operator level that lead some vessels to perform worse than others on a consistent basis, and that operator skill is an important factor driving variations in bycatch across fishing fleets; 2) Does the pattern hold across species, gear types, and fisheries? We predict that, irrespective of the bycatch context, there are high performing operators that are able to avoid bycatch while maintaining high target catch; and 3) Does skipper skill transfer across species?” We posit that certain types of bycatch are inherently more difficult to avoid but expect to find correlations between bycatch rates, indicating that a skipper's ability to avoid one species extends to other types of bycatch. If these hypotheses hold true, then there exists untapped potential to reduce bycatch without imposing additional controls on fishing effort and gear. This would support an alternative approach to framing management questions such as those around threatened species bycatch. It may be that it is not a random event across a fishery, but in fact is an issue of particular low performance operators. In this case, measures aimed directly at those individual operators could be an opportunity to make considerable progress towards reducing threatened species bycatch, at potentially much lower cost than common whole-of-fishery solutions.


2006 ◽  
Vol 63 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Joe Horwood ◽  
Carl O'Brien ◽  
Chris Darby

AbstractRecovery of depleted marine, demersal, commercial fish stocks has proved elusive worldwide. As yet, just a few shared or highly migratory stocks have been restored. Here we review the current status of the depleted North Sea cod (Gadus morhua), the scientific advice to managers, and the recovery measures in place. Monitoring the progress of North Sea cod recovery is now hampered by considerable uncertainties in stock assessments associated with low stock size, variable survey indices, and inaccurate catch data. In addition, questions arise as to whether recovery targets are achievable in a changing natural environment. We show that current targets are achievable with fishing mortality rates that are compatible with international agreements even if recruitment levels remain at the current low levels. Furthermore, recent collations of data on international fishing effort have allowed estimation of the cuts in fishing mortality achieved by restrictions on North Sea effort. By the beginning of 2005, these restrictions are estimated to have reduced fishing mortality rates by about 37%. This is insufficient to ensure recovery of North Sea cod within the next decade.


Sign in / Sign up

Export Citation Format

Share Document