scholarly journals A lumped-parameter model for kidney pressure during stone removal

2020 ◽  
Vol 85 (5) ◽  
pp. 703-723
Author(s):  
J G Williams ◽  
L Rouse ◽  
B W Turney ◽  
S L Waters ◽  
D E Moulton

Abstract In this paper, we consider a lumped-parameter model to predict renal pressures and flow rate during a minimally invasive surgery for kidney stone removal, ureterorenoscopy. A ureteroscope is an endoscope designed to work within the ureter and the kidney and consists of a long shaft containing a narrow, cylindrical pipe, called the working channel. Fluid flows through the working channel into the kidney. A second pipe, the ‘access sheath’, surrounds the shaft of the scope, allowing fluid to flow back out of the urinary system. We modify and extend a previously developed model ( Oratis et al., 2018) through the use of an exponential, instead of linear, constitutive law for kidney compliance and by exploring the effects of variable flow resistance, dependent on the presence of auxiliary ‘working tools’ in the working channel and the cross-sectional shapes of the tools, working channel, scope shaft and access sheath. We motivate the chosen function for kidney compliance and validate the model predictions, with ex vivo experimental data. Although the predicted and measured flow rates agree, we find some disagreement between theory and experiment for kidney pressure. We hypothesize that this is caused by spatial pressure variation in the renal pelvis, i.e. unaccounted for in the lumped-parameter model. We support this hypothesis through numerical simulations of the steady Navier–Stokes equations in a simplified geometry. We also determine the optimal cross-sectional shapes for the scope and access sheath (for fixed areas) to minimize kidney pressure and maximize flow rate.

Author(s):  
Corine Meuleman ◽  
Frank Willems ◽  
Rick de Lange ◽  
Bram de Jager

Surge is measured in a low-speed radial compressor with a vaned diffuser. For this system, the flow coefficient at surge is determined. This coefficient is a measure for the inducer inlet flow angle and is found to increase with increasing rotational speed. Moreover, the frequency and amplitude of the pressure oscillations during fully-developed surge are compared with results obtained with the Greitzer lumped parameter model. The measured surge frequency increases when the compressor mass flow is throttled to a smaller flow rate. Simulations show that the Greitzer model describes this relation reasonably well except for low rotational speeds. The predicted amplitude of the pressure rise oscillations is approximately two times too small when deep surge is met in the simulations. For classic surge, the agreement is worse. The amplitude is found to depend strongly on the shape of the compressor and throttle characteristic, which are not accurately known.


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

Flow boiling through microchannels is characterized by nucleation of vapor bubbles on the channel walls and their rapid growth as they fill the entire channel cross-section. In parallel microchannels connected through a common header, formation of vapor bubbles often results in flow maldistribution that leads to reversed flow in certain channels. The reversed flow is detrimental to the heat transfer and leads to early CHF condition. One way of eliminating the reversed flow is to incorporate flow restrictions at the channel inlet. In the present numerical study, a nucleating vapor bubble placed near the restricted end of a microchannel is numerically simulated. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid-vapor interface is captured using the level set technique. The results show that with no restriction the bubble moves towards the nearest channel outlet, whereas in the presence of a restriction, the bubble moves towards the distant but unrestricted end. It is proposed that channels with increasing cross-sectional area may be used to promote unidirectional growth of the vapor plugs and prevent reversed flow.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


2020 ◽  
Vol 40 (1) ◽  
pp. 59-66
Author(s):  
Abderrahmane Chachoua ◽  
Mohamed Kamal Hamidou ◽  
Mohammed Hamel

The design for better performance of the spiral housing volute used commonly in radial and mixed inflow gas turbines is of prime importance as it affects the machine stage at both design and off design conditions. The tongue of the scroll divides the flow into two streams, and represents a severe source of disturbances, in terms of thermodynamic parameter uniformity, maximum kinetic energy, the right angle of attack to the rotor and minimum losses. Besides, the volute suffers an undesirable effect due to the recirculating mass flow rate in near bottom vicinity of the tongue. The present project is an attempt to design a tongue fitted with cylindrical holes traversing normal to the stream wise direction, where on account of the large pressure difference between the top and the bottom sides of the tongue will force the recirculating flow to go through the rotor inlet. This possibility with its limitations has not yet been explored. A numerical simulation is performed which might provide our suitable objectives. To achieve this goal the ANSYS code is used to build the geometry, generate the mesh, and to simulate the flow by solving numerically the averaged Navier Stokes equations. Apparently, the numerical results show evidence of favorable impact in using porous tongue. The realization of a contact between the main and recirculation flow by drilled holes on the tongue surface leads to a flow field uniformity, a reduction in the magnitude of the loss coefficient, and a 20 % reduction in the recirculating mass flow rate.


Author(s):  
Hua Chen ◽  
Strong Guo ◽  
Xiao-Cheng Zhu ◽  
Zhao-Hui Du ◽  
Stone Zhao

In a previous publication (Guo & Chen et al., 2007), the authors solved the unsteady, 3-D Navier-Stokes equations with the k-ε turbulence model using CFX software to show that there is a volute stall coincided with the stage stall of a turbocharger centrifugal compressor operated at 423m/s tip speed and the stage stall frequency is dictated by a volute standing wave. This paper presents the flow condition at the vaneless diffuser and volute from the same simulation at various mass flow rates from stage peak efficiency to deep stage stall. Time averaged flow conditions show that (1) the influence of exducer blade passing at the volute inlet rapidly diminishes at the compressor peak pressure ratio point and the influence vanishes when the stage is in stall; (2) only at the peak pressure ratio point, circumferentially averaged, spanwise distribution of radial velocity at the volute inlet has an inflection point and the distribution meets the requirement of the Fjo̸rtoft instability theorem; (3) in the volute discharge section, the flow stalls after the stage stalls and the vortex core at the cross sectional center of the section breaks down; (4) impeller total pressure rise curve has a flat region in the middle before the stage stalls and (5) diffuser stall triggers the stage stall and drives the volute into stall.


2003 ◽  
Vol 125 (2) ◽  
pp. 382-385 ◽  
Author(s):  
S. Tsangaris ◽  
N. W. Vlachakis

The Navier-Stokes equations have been solved in order to obtain an analytical solution of the fully developed laminar flow in a duct having a rectangular cross section with two opposite equally porous walls. We obtained solutions both for the case of steady flow as well as for the case of oscillating pressure gradient flow. The pulsating flow is obtained by the superposition of the steady and oscillating pressure gradient solutions. The solution has applications for blood flow in fiber membranes used for the artificial kidney.


2002 ◽  
Vol 465 ◽  
pp. 213-235 ◽  
Author(s):  
D. R. GRAHAM ◽  
J. J. L. HIGDON

Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.


2014 ◽  
Vol 761 ◽  
pp. 241-260 ◽  
Author(s):  
G. Daschiel ◽  
V. Krieger ◽  
J. Jovanović ◽  
A. Delgado

AbstractThe development of incompressible turbulent flow through a pipe of wavy cross-section was studied numerically by direct integration of the Navier–Stokes equations. Simulations were performed at Reynolds numbers of $4.5\times 10^{3}$ and $10^{4}$ based on the hydraulic diameter and the bulk velocity. Results for the pressure resistance coefficient ${\it\lambda}$ were found to be in excellent agreement with experimental data of Schiller (Z. Angew. Math. Mech., vol. 3, 1922, pp. 2–13). Of particular interest is the decrease in ${\it\lambda}$ below the level predicted from the Blasius correlation, which fits almost all experimental results for pipes and ducts of complex cross-sectional geometries. Simulation databases were used to evaluate turbulence anisotropy and provide insights into structural changes of turbulence leading to flow relaminarization. Anisotropy-invariant mapping of turbulence confirmed that suppression of turbulence is due to statistical axisymmetry in the turbulent stresses.


2007 ◽  
Vol 571 ◽  
pp. 265-280 ◽  
Author(s):  
PIETRO SCANDURA

The turbulent flow generated by an oscillating pressure gradient close to an infinite plate is studied by means of numerical simulations of the Navier–Stokes equations to analyse the characteristics of the steady streaming generated within the boundary layer. When the pressure gradient that drives the flow is given by a single harmonic component, the time average over a cycle of the flow rate in the boundary layer takes both positive and negative values and the steady streaming computed by averaging the flow over n cycles tends to zero as n tends to infinity. On the other hand, when the pressure gradient is given by the sum of two harmonic components, with angular frequencies ω1 and ω2 = 2ω1, the time average over a cycle of the flow rate does not change sign. In this case steady streaming is generated within the boundary layer and it persists in the irrotational region. It is shown both theoretically and numerically that in spite of the presence of steady streaming, the time average over n cycles of the hydrodynamic force, acting per unit area of the plate, vanishes as n tends to infinity.


Author(s):  
Patricio I. Rosen Esquivel ◽  
Jan H. M. ten Thije Boonkkamp ◽  
Jacques A. M. Dam ◽  
Robert M. M. Mattheij

In this paper we study the effect of wall-shape on laminar flow in corrugated pipes. The main objectives of this paper are to characterize how the flow rate varies with wall-shape, and to identify which shapes enhance the flow rate. We conduct our study by numerically solving the Navier-Stokes equations for a periodic section of the pipe. The numerical model is validated with experimental data on the pressure drop and friction factor. The effect of wall-shape is studied by considering a family of periodic pipes, in which the wall-shape is characterized by the amplitude, and the ratio between the lengths of expansion and contraction of a periodic section. We study the effect that varying these parameters has on the flow. We show that for small Reynolds numbers, a symmetric shape yields a higher flow rate than an asymmetric shape. For large Reynolds numbers, a configuration with a large expansion region, followed by a short contraction region, performs better. We show that when the amplitude is fixed, there exists an optimal ratio of expansion/contraction which maximizes the flow rate. The flow rate can be increased by 8%, for a geometry with small period; in the case of a geometry with large period, the flow rate increases by 35%, for large Reynolds number, and even 120% for small Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document