scholarly journals Interleukin 17 family members in health and disease

Author(s):  
Soo-Hyun Chung ◽  
Xiao-Qi Ye ◽  
Yoichiro Iwakura

Abstract The interleukin-17 (IL-17) family consists of six family members (IL-17A–IL-17F) and all the corresponding receptors have been identified recently. This family is mainly involved in the host defense mechanisms against bacteria, fungi and helminth infection by inducing cytokines and chemokines, recruiting neutrophils, inducing anti-microbial proteins and modifying T-helper cell differentiation. IL-17A and some other family cytokines are also involved in the development of psoriasis, psoriatic arthritis and ankylosing spondylitis by inducing inflammatory cytokines and chemokines, and antibodies against IL-17A as well as the receptor IL-17RA are being successfully used for the treatment of these diseases. Involvement in the development of inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and tumors has also been suggested in animal disease models. In this review, we will briefly review the mechanisms by which IL-17 cytokines are involved in the development of these diseases and discuss possible treatment of inflammatory diseases by targeting IL-17 family members.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Qu ◽  
Mingli Xu ◽  
Izuru Mizoguchi ◽  
Jun-ichi Furusawa ◽  
Kotaro Kaneko ◽  
...  

T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF-α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhou Zhou ◽  
Weiliang Sun ◽  
Ying Liang ◽  
Yanxiang Gao ◽  
Wei Kong ◽  
...  

Uncontrolled activity of T cells mediates autoimmune and inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and atherosclerosis. Recent findings suggest that enhanced activity of interleukin-17 (IL-17) producing T helper 17 cells (Th17 cells) plays an important role in autoimmune diseases and inflammatory diseases. Previous papers have revealed that a lipid-lowering synthetic ligand of peroxisome proliferator-activated receptorα(PPARα), fenofibrate, alleviates both atherosclerosis and a few nonlipid-associated autoimmune diseases such as autoimmune colitis and multiple sclerosis. However, the link between fenofibrate and Th17 cells is lacking. In the present study, we hypothesized that fenofibrate inhibited the differentiation of Th17 cells. Our results showed that fenofibrate inhibited transforming growth factor-β(TGF-β) and IL-6-induced differentiation of Th17 cellsin vitro. However, other PPARαligands such as WY14643, GW7647 and bezafibrate did not show any effect on Th17 differentiation, indicating that this effect of fenofibrate might be PPARαindependent. Furthermore, our data showed that fenofibrate reduced IL-21 production and STAT3 activation, a critical signal in the Th17 differentiation. Thus, by ameliorating the differentiation of Th17 cells, fenofibrate might be beneficial for autoimmunity and inflammatory diseases.


2009 ◽  
Vol 78 (1) ◽  
pp. 381-386 ◽  
Author(s):  
Ulrika Islander ◽  
Annica Andersson ◽  
Erika Lindberg ◽  
Ingegerd Adlerberth ◽  
Agnes E. Wold ◽  
...  

ABSTRACT T-helper 17 (Th17) cells are characterized by their production of interleukin-17 (IL-17) and have a role in the protection against infections and in certain inflammatory diseases. Humans who lack Th17 cells are more susceptible to Staphylococcus aureus infections compared to individuals having Th17 cells. S. aureus is part of the commensal skin microflora and also colonize the infant gut. To investigate whether UV-killed S. aureus would be more capable of inducing IL-17 than other commensal bacteria, we stimulated mononuclear cells from adults, infants, and newborns with various gram-positive and gram-negative commensal bacteria. IL-17 was produced from adult memory Th17 cells after stimulation with superantigen-producing S. aureus but not nonsuperantigenic S. aureus or other common commensal gut bacteria. Cells from newborns were poor IL-17 producers after stimulation with S. aureus, whereas in some cases IL-17 was secreted from cells isolated from infants at the age of 4 and 18 months. These results suggest that superantigenic S. aureus are particularly efficient in stimulating IL-17 production and that the cytokine is produced from memory T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eva Sonnenberg-Riethmacher ◽  
Michaela Miehe ◽  
Dieter Riethmacher

Matricellular proteins are involved in the crosstalk between cells and their environment and thus play an important role in allergic and inflammatory reactions. Periostin, a matricellular protein, has several documented and multi-faceted roles in health and disease. It is differentially expressed, usually upregulated, in allergic conditions, a variety of inflammatory diseases as well as in cancer and contributes to the development and progression of these diseases. Periostin has also been shown to influence tissue remodelling, fibrosis, regeneration and repair. In allergic reactions periostin is involved in type 2 immunity and can be induced by IL-4 and IL-13 in bronchial cells. A variety of different allergic diseases, among them bronchial asthma and atopic dermatitis (AD), have been shown to be connected to periostin expression. Periostin is commonly expressed in fibroblasts and acts on epithelial cells as well as fibroblasts involving integrin and NF-κB signalling. Also direct signalling between periostin and immune cells has been reported. The deposition of periostin in inflamed, often fibrotic, tissues is further fuelling the inflammatory process. There is increasing evidence that periostin is also expressed by epithelial cells in several of the above-mentioned conditions as well as in cancer. Augmented periostin expression has also been associated with chronic inflammation such as in inflammatory bowel disease (IBD). Periostin can be expressed in a variety of different isoforms, whose functions have not been elucidated yet. This review will discuss potential functions of periostin and its different isoforms in allergy and inflammation.


Author(s):  
James Byrne ◽  
Kevin Baker ◽  
Aileen Houston ◽  
Elizabeth Brint

AbstractThe IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.


Author(s):  
Jolet Y. Mimpen ◽  
Sarah J. B. Snelling ◽  
Andrew J. Carr ◽  
Stephanie G. Dakin

Interleukin (IL)-17A, a pro-inflammatory cytokine that is linked to the pathology of several inflammatory diseases, has been shown to be upregulated in early human tendinopathy and to mediate inflammatory and tissue remodelling events. However, it remains unclear which cells in tendons can respond to IL-17A, and how IL-17A, and its family members IL-17F and IL-17AF, can affect intracellular signalling activation and mRNA expression in healthy and diseased tendon-derived fibroblasts. Using well-phenotyped human tendon samples, we show that IL-17A and its receptors IL-17RA and IL-17RC are present in healthy hamstring, and tendinopathic and torn supraspinatus tendon tissue. Next, we investigated the effects of IL-17A, IL-17F, or IL-17AF on cultured patient-derived healthy and diseased tendon-derived fibroblasts. In these experiments, IL-17A treatment significantly upregulated IL6, MMP3, and PDPN mRNA expression in diseased tendon-derived fibroblasts. IL-17AF treatment induced moderate increases in these target genes, while little change was observed with IL-17F. These trends were reflected in the activation of intracellular signalling proteins p38 and NF-κB p65, which were significantly increased by IL-17A, modestly increased by IL-17AF, and not increased by IL-17F. In combination with TNF-α, all three IL-17 cytokines induced IL6 and MMP3 mRNA expression to similar levels. Therefore, this study confirms that healthy and diseased tendon-derived fibroblasts are responsive to IL-17 cytokines and that IL-17A induces the most profound intracellular signalling activation and mRNA expression of inflammatory genes, followed by IL-17AF, and finally IL-17F. The ability of IL-17 cytokines to induce a direct response and activate diverse pro-inflammatory signalling pathways through synergy with other inflammatory mediators suggests a role for IL-17 family members as amplifiers of tendon inflammation and as potential therapeutic targets in tendinopathy.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5681
Author(s):  
Adrian Eugen Rosca ◽  
Mara Ioana Iesanu ◽  
Carmen Denise Mihaela Zahiu ◽  
Suzana Elena Voiculescu ◽  
Alexandru Catalin Paslaru ◽  
...  

Capsaicin is a widespread spice known for its analgesic qualities. Although a comprehensive body of evidence suggests pleiotropic benefits of capsaicin, including anti-inflammatory, antioxidant, anti-proliferative, metabolic, or cardioprotective effects, it is frequently avoided due to reported digestive side-effects. As the gut bacterial profile is strongly linked to diet and capsaicin displays modulatory effects on gut microbiota, a new hypothesis has recently emerged about its possible applicability against widespread pathologies, such as metabolic and inflammatory diseases. The present review explores the capsaicin–microbiota crosstalk and capsaicin effect on dysbiosis, and illustrates the intimate mechanisms that underlie its action in preventing the onset or development of pathologies like obesity, diabetes, or inflammatory bowel diseases. A possible antimicrobial property of capsaicin, mediated by the beneficial alteration of microbiota, is also discussed. However, as data are coming mostly from experimental models, caution is needed in translating these findings to humans.


2020 ◽  
Vol 15 (6) ◽  
pp. 67-78
Author(s):  
T.Ya. Vakhitov ◽  
◽  
I.V. Kudryavtsev ◽  
T.S. Sall ◽  
N.M. Lazareva ◽  
...  

This review summarizes the current scientific evidence on the role of different T helper (Th) cell subsets, key cytokines, and chemokines in inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. According to modern concepts, not only type Th1, but also Th17, cytokines, and other cells of innate and adaptive immunity are involved in the immunopathogenesis of IBD. Most of the review is devoted to the current understanding of the role of polarized Th17 cells and subpopulations of follicular Th cells, the main function of which is to form a specific humoral immune response in IBD mediated by B cells. The role of the intestinal microbiota in the Th cell polarization, that is, their differentiation, accompanied by the acquisition of characteristics inherent in a particular subpopulation is discussed. The presented data are important for understanding the role of immune processes, including microbiome-associated ones, in the pathogenesis of IBD. Key words: inflammatory bowel disease, ulcerative colitis, Crohn’s disease, T helper cell subsets, cytokines, chemokines, gut microbiome


Sign in / Sign up

Export Citation Format

Share Document