scholarly journals Role of the CD5 molecule on TCR gammadelta T cell-mediated immune functions: development of germinal centers and chronic intestinal inflammation

2003 ◽  
Vol 15 (1) ◽  
pp. 97-108 ◽  
Author(s):  
A. Mizoguchi
2001 ◽  
Vol 120 (5) ◽  
pp. A517-A517
Author(s):  
A MIZOGUCHI ◽  
E MIZOGUCHI ◽  
Y DEJONG ◽  
H TAKEDATSU ◽  
F PREFFER ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A517
Author(s):  
Atsushi Mizoguchi ◽  
Emiko Mizoguchi ◽  
Ype P. De Jong ◽  
Hiroko Takedatsu ◽  
Frederic I. Preffer ◽  
...  

2008 ◽  
Vol 190 (19) ◽  
pp. 6398-6408 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Lucie Bartonickova ◽  
Wiebke Behrens ◽  
Birgit Brenneke ◽  
Jessika Schulze ◽  
...  

ABSTRACT The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 612 ◽  
Author(s):  
Edoardo Troncone ◽  
Giovanni Monteleone

Colorectal carcinogenesis is a complex process in which many immune and non-immune cells and a huge number of mediators are involved. Among these latter factors, Smad7, an inhibitor of the transforming growth factor (TGF)-β1 signaling that has been involved in the amplification of the inflammatory process sustaining chronic intestinal inflammation, is supposed to make a valid contribution to the growth and survival of colorectal cancer (CRC) cells. Smad7 is over-expressed by tumoral cells in both sporadic CRC and colitis-associated CRC, where it sustains neoplastic processes through activation of either TGFβ-dependent or non-dependent pathways. Consistently, genome-wide association studies have identified single nucleotide polymorphisms of the Smad7 gene associated with CRC and shown that either amplification or deletion of the Smad7 gene associates with a poor prognosis or better outcome, respectively. On the other hand, there is evidence that over-expression of Smad7 in immune cells infiltrating the inflamed gut of patients with inflammatory bowel disease can elicit anti-tumor responses, with the down-stream effect of attenuating CRC cell growth. Taken together, these observations suggest a double role of Smad7 in colorectal carcinogenesis, which probably depends on the cell subset and the biological context analyzed. In this review, we summarize the available evidences about the role of Smad7 in both sporadic and colitis-associated CRC.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Irma Tindemans ◽  
Maria E. Joosse ◽  
Janneke N. Samsom

Infiltration of the lamina propria by inflammatory CD4+ T-cell populations is a key characteristic of chronic intestinal inflammation. Memory-phenotype CD4+ T-cell frequencies are increased in inflamed intestinal tissue of IBD patients compared to tissue of healthy controls and are associated with disease flares and a more complicated disease course. Therefore, a tightly controlled balance between regulatory and inflammatory CD4+ T-cell populations is crucial to prevent uncontrolled CD4+ T-cell responses and subsequent intestinal tissue damage. While at steady state, T-cells display mainly a regulatory phenotype, increased in Th1, Th2, Th9, Th17, and Th17.1 responses, and reduced Treg and Tr1 responses have all been suggested to play a role in IBD pathophysiology. However, it is highly unlikely that all these responses are altered in each individual patient. With the rapidly expanding plethora of therapeutic options to inhibit inflammatory T-cell responses and stimulate regulatory T-cell responses, a crucial need is emerging for a robust set of immunological assays to predict and monitor therapeutic success at an individual level. Consequently, it is crucial to differentiate dominant inflammatory and regulatory CD4+ T helper responses in patients and relate these to disease course and therapy response. In this review, we provide an overview of how intestinal CD4+ T-cell responses arise, discuss the main phenotypes of CD4+ T helper responses, and review how they are implicated in IBD.


2010 ◽  
Vol 208 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Jennifer H. Cox ◽  
Noelyn M. Kljavin ◽  
Nandhini Ramamoorthi ◽  
Lauri Diehl ◽  
Marcel Batten ◽  
...  

Interleukin-27 (IL-27) is a cytokine known to have both proinflammatory and immunoregulatory functions. The latter appear to dominate in vivo, where IL-27 suppresses TH17 responses and promotes the differentiation of Tr1 cells expressing interferon-γ and IL-10 and lacking forkhead box P3 (Foxp3). Accordingly, IL-27 receptor α (Il27ra)–deficient mice suffer from exacerbated immune pathology when infected with various parasites or challenged with autoantigens. Because the role of IL-27 in human and experimental mouse colitis is controversial, we studied the consequences of Il27ra deletion in the mouse T cell transfer model of colitis and unexpectedly discovered a proinflammatory role of IL-27. Absence of Il27ra on transferred T cells resulted in diminished weight loss and reduced colonic inflammation. A greater fraction of transferred T cells assumed a Foxp3+ phenotype in the absence of Il27ra, suggesting that IL-27 functions to restrain regulatory T cell (Treg) development. Indeed, IL-27 suppressed Foxp3 induction in vitro and in an ovalbumin-dependent tolerization model in vivo. Furthermore, effector cell proliferation and IFN-γ production were reduced in the absence of Il27ra. Collectively, we describe a proinflammatory role of IL-27 in T cell–dependent intestinal inflammation and provide a rationale for targeting this cytokine in pathological situations that result from a breakdown in peripheral immune tolerance.


2014 ◽  
Vol 5 ◽  
Author(s):  
Daniele Corridoni ◽  
Kristen O. Arseneau ◽  
Maria Grazia Cifone ◽  
Fabio Cominelli

2011 ◽  
Vol 12 (1) ◽  
pp. 42 ◽  
Author(s):  
Kiran Assi ◽  
Scott Patterson ◽  
Shoukat Dedhar ◽  
David Owen ◽  
Megan Levings ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yashar Houshyar ◽  
Luca Massimino ◽  
Luigi Antonio Lamparelli ◽  
Silvio Danese ◽  
Federica Ungaro

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.


Sign in / Sign up

Export Citation Format

Share Document