scholarly journals 358 Effects of fermented feed supplementation on pig growth performance: A meta-analysis

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 125-126
Author(s):  
Bocheng Xu ◽  
Zhi Li ◽  
Zeqing Lu ◽  
Yizhen Wang

Abstract Fermented feed (FF) is recommended due to its high nutritional value and digestibility, but its effects on pig growth performance are inconsistent. This meta-analysis was conducted to quantify the effects of FF on pig growth performance. We systematically searched in PubMed and Web of Science for studies (published between January 1, 2000 and December 20, 2018) comparing the effects of FF supplementation with basal diet on the pig growth performance. The main outcomes were average daily gain (ADG), average daily feed intake (ADFI), and gain: feed ratio (G/F). Random-effects model was used to compute the weighted mean difference (WMD) and 95% confidence interval (95% CI). The robustness of the pooled estimates was determined using sensitivity and subgroup analyses. Of 1371 identified articles, 25 were eligible and were included in the meta-analysis (n = 2391 pigs). Compared with the basal diet, FF supplementation improved ADG and G/F of weaned piglets (ADG: WMD = 18.698 g/d, 95% CI: 13.925 to 23.472, P < 0.001; G/F: WMD= 0.027, 95% CI: 0.020 to 0.036, P < 0.001), growing pigs (ADG: WMD =24.436 g/d, 95% CI: 12.441 to 36.430, P < 0.001; G/F: WMD = 0.011, 95% CI: 0.003 to 0.021, P = 0.004), and finishing pigs (ADG: WMD = 42.012 g/d, 95% CI: 8.799 to 75.226, P = 0.015; G/F: WMD = 0.018, 95% CI: 0.004 to 0.032, P = 0.014), but had no effect on ADFI (P > 0.05). The subgroup analyses revealed that fermented feed ingredients could boost the growth performance of weaned piglets and growing pigs. Moreover, the fermented feed additives promoted growth at all stages. Our study supports FF can enhance pig growth performance. To our knowledge, this is the first meta-analysis on the topic to provide production strategies for FF application in pig industry.

2019 ◽  
Vol 99 (4) ◽  
pp. 840-847
Author(s):  
X. Liu ◽  
Y.S. Han ◽  
I.H. Kim

The present experiment was to evaluate the effects of dietary Spirulina (SP) supplementation in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc, 25.32 ± 1.36 kg] were randomly distributed to one of four treatments: control, basal diet; treatment 1, basal diet + 0.025% SP; treatment 2, basal diet + 0.050% SP; and treatment 3, basal diet + 0.100% SP. Growing pigs fed 0.050% SP diet had greater (P < 0.05) body weight and fecal Lactobacillus counts compared with pigs fed basal diet. Average daily gain and gain to feed ratio were greater (P < 0.05) in pigs fed 0.050% and 0.100% SP diets as compared with pigs fed basal diet. The apparent total tract digestibility (ATTD) of dry matter (DM) and superoxide dismutase (SOD) activity for pigs fed 0.050% SP diet tended to increase compared with pigs fed basal diet (P < 0.10). Pigs fed 0.025%, 0.050%, and 0.100% SP had a higher (P < 0.05) glutathione peroxidase (GPx) activity than pigs fed basal diet. In conclusion, SP supplementation improved growth performance and ATTD of DM, increased the SOD and GPx activity, and enhanced the fecal Lactobacillus counts in growing pigs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 199-200
Author(s):  
Woo Jung Seok ◽  
Lei Cheng ◽  
Thanapal Palanisamy ◽  
Xiangting Fu ◽  
In Ho Kim

Abstract This study aimed to evaluate the effects of supplemental Bacillus licheniformis derived-protease in diets on growth performance, apparent total tract digestibility (ATTD), and fecal microbial shedding in post-weaned growing pigs. In total, 90 crossbred (Landrace × Yorkshire × Duroc) weaner pigs with an initial average BW of 6.61 ± 1.73 kg were randomly allotted into 2 treatments with 9 replicate pens of 5 pigs for a 4-phase feeding trial (0 to 1, 1 to 3, 3 to 6, and 6 to 11 weeks). The treatments were: CON, corn-soybean meal based basal diet; PROT, basal diet + 0.05% protease. The basal diet contained 16.32, 15.91, 15.49, and 14.91 MJ/kg digestibility energy respectively and 1.50, 1.40, 1.30, and 1.00% lysine respectively for phase 1, 2, 3, and 4. All data were statistically analyzed by Student’s t-test of SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Variability in the data was expressed as mean ± standard deviation, differences with P &lt; 0.05 were considered to be statistically significant. During phase 3, average daily gain, and gain: feed ratio was increased (P &lt; 0.05) in pigs fed PROT diet compared with those fed CON diet. Pigs fed PROT diet had higher (P &lt; 0.05) ATTD of dry matter and crude protein than pigs fed CON diet. No differences were observed in fecal microflora counts between CON and PROT groups. Dietary supplementation of Bacillus licheniformis derived-protease increased growth performance at phase 3 and increased the digestibility) of dry matter and crude protein (insert mean values for both Con vs Treat) in growing pigs.


2021 ◽  
Vol 100 (1) ◽  
Author(s):  
Olufemi Oluwaseun Babatunde ◽  
Olayiwola Adeola

Abstract Two experiments were carried out to determine a time-series effect of phytase on phosphorus (P) utilization in growing and finishing pigs using growth performance, apparent total tract digestibility (ATTD) of nutrients, P excretion, and plasma concentrations of minerals as the response criteria for evaluation. In both experiments, treatments were arranged as a 3 × 4 factorial in a randomized complete block design with 3 corn–soybean meal-based diets including a P-adequate positive control (PC), a low-P negative control (NC; no inorganic P), and NC supplemented with phytase at 1,000 FYT/kg (NC + 1,000); and 4 sampling time points at days 7, 14, 21, and 28 in experiment 1, and days 14, 26, 42, and 55 in experiment 2. In both trials, 96 growing pigs with average body weight (BW) of 19.8 ± 1.16 and 49.8 ± 3.21 kg, respectively, were allocated to the 3 diets with 8 replicates pens (4 barrows and 4 gilts) and 4 pigs per pen. In experiment 1, pigs fed the PC had higher (P &lt; 0.01) BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) when compared with pigs fed the NC. There was an interaction (P &lt; 0.01) between time and diet on the BW and ADG of pigs while a linear and quadratic increase (P &lt; 0.01) was observed with the ADFI and G:F, respectively, over time. Phytase supplementation improved (P &lt; 0.01) all growth performance responses. Pigs fed the PC had greater (P &lt; 0.01) ATTD of P and Ca than pigs fed the NC. There was no interaction effect on the ATTD of nutrients. Phytase addition improved the ATTD of P and Ca over pigs fed the NC. There was an interaction (P &lt; 0.01) between diet and time on the total and water-soluble P (WSP) excreted. There was a quadratic decrease (P &lt; 0.01) in plasma concentration of Ca in pigs over time. In experiment 2, there was a quadratic increase (P &lt; 0.01) in BW, ADG, and G:F of pigs over time. Similarly, the inclusion of phytase improved (P &lt; 0.05) all growth performance parameters except ADFI. A linear increase (P &lt; 0.05) in the ATTD of DM, P, and Ca occurred over time. Phytase inclusion improved (P &lt; 0.01) the ATTD of P and Ca. Plasma concentrations of P were improved by phytase addition. Phytase supplementation of the NC reduced WSP excretion by 45%, 32%, and 35% over the growing, finishing, and entire grow-finish period, respectively. In conclusion, phytase improves the utilization of P in growing and finishing pigs; however, the magnitude of effect on responses may vary over time.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 65-66
Author(s):  
Woong B Kwon ◽  
Kevin J Touchette ◽  
Aude Simongiovanni ◽  
Kostas Syriopoulos ◽  
Anna Wessels ◽  
...  

Abstract The hypothesis that excess dietary Leu affects growth performance and metabolism of branched-chain amino acids (BCAA) in growing pigs was tested. Forty barrows (30.0 ± 2.7 kg) were placed in metabolism crates and randomly allotted to 5 diets that contained 100, 150, 200, 250, or 300% of the requirement for standardized ileal digestible Leu. Initial and final body weight of pigs and daily feed provisions were recorded. Urine and fecal samples were collected for 5 d to measure N balance and biological value of diets. At the conclusion of the experiment, blood, brain, liver, and muscle samples were collected and average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated. Orthogonal polynomial contrasts were used to determine linear and quadratic effects of increasing Leu in the diets. Results indicated that ADG, ADFI, and G:F decreased (linear, P < 0.05) as dietary Leu increased (Table 1). A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of protein was also observed. Plasma urea N increased (linear, P < 0.05) and a quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in cerebral serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), concentrations of BCAA in muscle decreased (linear, P < 0.05), concentration of α-keto-isovalerate was reduced (linear and quadratic, P < 0.001) in liver, muscle, and serum, and α-keto-β-methylvalerate was reduced (linear and quadratic, P < 0.001) in muscle and serum, whereas α-keto-isocaproate increased (linear, P < 0.05) in liver and muscle, and in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. In conclusion, excess dietary Leu reduced growth performance and cerebral serotonin and tended to reduce protein synthesis.


2019 ◽  
Vol 97 (12) ◽  
pp. 4810-4821 ◽  
Author(s):  
Bocheng Xu ◽  
Luoyi Zhu ◽  
Jie Fu ◽  
Zhi Li ◽  
Yizhen Wang ◽  
...  

Abstract As an alternative to antimicrobial growth promoters, fermented feed (FF) has been continuously developed for two decades; however, its effects on feed, performance, digestibility, and meat quality of pigs have yet to be systematically and comprehensively evaluated. This study aimed to (i) quantitatively evaluate the effects of fermentation on nutritional components of feed stuffs; (ii) quantitatively evaluate the effects of FF on pig growth performance, digestibility, and meat quality; and (iii) explore the dose–effect relationship. From PubMed and Web of Science (searched range from January 1, 2000 to April 4, 2019), we collected 3,271 articles, of which 30 articles (3,562 pigs) were included in our meta-analysis. Our analysis revealed that fermentation significantly increased the CP content in feed (P &lt; 0.05). For weaned piglets and growing pigs, FF significantly improved ADG, G:F, DM digestibility, N digestibility, and energy digestibility (P &lt; 0.05). However, compared with the basal diet, FF had no significant effects on growth performance and nutrient digestibility in finishing pigs (P &gt; 0.05). In the subgroup analyses, fermented ingredients increased the growth performance of weaned piglets and growing pigs, and fermented additives promoted the growth of pigs at all stages. The dose–effect analysis confirmed that the optimal doses of fermented ingredients and additives were 8% and 0.15%, respectively. Furthermore, FF had beneficial impacts on meat quality through increased lightness, redness, marbling and flavor and reduced drip loss (P &lt; 0.05). In conclusions, FF improved growth performance and meat quality primarily due to its positive effects on nutritive value and utilization.


2020 ◽  
Vol 100 (1) ◽  
pp. 133-139
Author(s):  
Xiang Ao ◽  
Yan Lei ◽  
In Ho Kim

This study was conducted to evaluate the effect of supplementation of different flavors (apple and anise) on growth performance, nutrient digestibility, blood profiles, and carcass quality in growing–finishing pigs. A total of 96 growing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 28.2 ± 0.7 kg were randomly assigned to one of the following three treatments: (1) CON, basal diet; (2) APF, basal diet + 0.05% apple flavor; (3) ANF, basal diet + 0.05% anise flavor, according to their BW and sex in this 15 wk experiment. There were eight replications (pens) per treatment and four pigs per pen (two barrows and two gilts). During week 0–5, pigs fed ANF diets had greater (p < 0.05) average daily gain (ADG) and average daily feed intake than those fed CON and APF diets. Dietary ANF treatment increased (p < 0.05) ADG during 0–15 wk compared with CON treatment. At the end of 5 wk, the apparent total tract digestibility of nitrogen in ANF treatment was improved (p < 0.05) compared with that in CON treatment. Dietary treatments did not affect the studied traits of carcass and meat quality. The inclusion of anise flavor increased ADG, but apple flavor had no effect on growth performance in growing–finishing pigs.


2014 ◽  
Vol 59 (No. 5) ◽  
pp. 247-253 ◽  
Author(s):  
S. Mohana Devi ◽  
US Devi ◽  
IH Kim

A 6-week trial was conducted to investigate the effects of animal skin protein sources from swine and cattle on growth performance, body condition and blood characteristics in growing pigs. A total of 96 pigs (23.50 &plusmn; 0.61&nbsp;kg) were randomly allotted into four dietary treatment groups as follows: (1) basal diet (BD); (2) basal diet with 1.5% hydrolysed render meal (HRM); (3) basal diet with 1.5% swine skin meal (SSM); (4) basal diet with 1.5% cattle hide meal (CHM). There were six replicate pens per treatment with four pigs per pen. The average daily gain (ADG) was improved in response to SSM treatment compared with other treatments (P &lt; 0.05). Pigs fed with HRM, SSM and CHM diets showed increases in average daily feed intake (ADFI) and decreased gain-to-feed (G : F) ratios compared with pigs fed with BD (P &lt; 0.05). There were no differences in dry matter (DM), nitrogen (N), and energy (E) digestibility among treatments. The backfat thickness and lean percentage of pigs was unaffected by the treatments. Similarly, there was no difference in blood characteristics among treatments. In conclusion, the supplementation of SSM in growing pig diets improved the growth rate and Feed Intake (FI), but its usage in swine diets is limited by the poor protein quality. &nbsp;


2020 ◽  
Vol 13 (9) ◽  
pp. 1902-1909
Author(s):  
Waewaree Boontiam ◽  
Chalong Wachirapakorn ◽  
Phreerapong Phaengphairee

Background and Aim: Weaning pigs normally suffer from many stressors which have impaired growth performance and immunity. Hydrolyzed yeast has been proposed as an alternative feed additive. The aim of this study was to investigate the effects of various levels of hydrolyzed yeast (HY) supplementation in the feed of weaning pigs on growth performance, diarrhea incidence, immunity, antioxidant capacity, and microbial populations. Materials and Methods: A total of 144 crossbred weaning pigs (Duroc × Landrace × Large White) with a mean body weight (BW) of 7.46 kg were randomly assigned to one of four treatments during a 5-week feeding trial. Treatments consisted of a basal diet without HY inclusion (control), or the basal diet supplemented with HY at 0.5, 1.0, and 1.5 g/kg of diet, respectively. Results: Piglets fed with 1.0 or 1.5 g/kg HY presented significantly increased BW (p=0.009) and decreased incidence of diarrhea (p=0.001). The final BW (p=0.012), average daily gain (p=0.094), and average daily feed intake (p=0.091) showed a linear improvement with the level of HY inclusion. However, the gain-to-feed ratio was unaffected by dietary treatments. Linear responses to the HY supplementation levels were also observed for blood urea nitrogen (p=0.030), total protein (p=0.017), lymphocyte percentage (p=0.064), catalase activity (p=0.089), malondialdehyde (MDA) level (p=0.001), Salmonella spp. (p=0.024), Escherichia coli (p=0.021), and Lactobacillus spp. (p=0.048). Dietary inclusion of HY at 1.0 and 1.5 g/kg resulted in increased immunoglobulin A and G secretions (p=0.042 and p=0.022, respectively) and decreased MDA concentration (p<0.01) and Salmonella spp. (p=0.026) and E. coli (p=0.050). Conclusion: It was concluded that HY inclusion at 1.0 and 1.5 g/kg in the diet of weaning pigs improve BW, immunoglobulin secretion, and antioxidant enzyme activity, whereas it lowers diarrhea occurrence, lipid peroxidation, and pathogenic bacteria in weaning pigs.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
M Shamimul Hasan ◽  
Mark A Crenshaw ◽  
Shengfa F Liao

Abstract Lysine is the first limiting amino acid (AA) in typical swine diets. Our previous research showed that dietary lysine restriction compromised the growth performance of late-stage finishing pigs, which was associated with the changes in plasma concentrations of nutrient metabolites and hormone insulin-like growth factor 1 (IGF-1). This study was conducted to investigate how dietary lysine restriction affects the plasma concentrations of selected metabolites and three anabolic hormones in growing pigs. Twelve individually penned young barrows (Yorkshire × Landrace; 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (n = 6). Two corn and soybean meal based diets were formulated to contain 0.65% and 0.98% standardized ileal digestible lysine as a lysine-deficient (LDD) and a lysine-adequate (LAD) diets, respectively. During the 8-week feeding trial, pigs had ad libitum access to water and their respective diets, and the growth performance parameters including average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. At the end of the trial, jugular vein blood was collected for plasma preparation. The plasma concentrations of free AA and six metabolites were analyzed with the established chemical methods, and the hormone concentrations were analyzed with the commercial ELISA kits. Data were analyzed with Student’s t-test. The ADG of LDD pigs was lower (P &lt; 0.01) than that of LAD pigs, and so was the G:F (P &lt; 0.05) since there was no difference in the ADFI between the two groups of pigs. In terms of free AA, the plasma concentrations of lysine, methionine, leucine, and tyrosine were lower (P &lt; 0.05), while that of β-alanine was higher (P &lt; 0.01), in the LDD pigs. The total plasma protein concentration was lower (P &lt; 0.02) in the LDD pigs, whereas no differences were observed for the other metabolites between the two groups. No differences were observed in the plasma concentrations of growth hormone (GF), insulin, and IGF-1 between the two groups as well. These results indicate that the lack of lysine as a protein building block must be the primary reason for a reduced body protein synthesis and, consequently, the compromised G:F ratio and ADG. The changes in the plasma concentrations of total protein and four AA suggest that the compromised growth performance might be associated with some cell signaling and metabolic pathways that may not involve the GH/IGF-1 axis.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 198-199
Author(s):  
Hansol Kim ◽  
Eunjeong Jang ◽  
Sang Yun Ji ◽  
Beob Gyun G Kim

Abstract Sufficient supply of dietary phosphorus (P) is critical for maximizing muscle and bone growth of pigs. The objective was to compare standardized total tract digestible (STTD) P requirements of growing pigs determined in the experiments and those estimated using modeling approach. Fifty-two experiments in the literature that empirically determined P requirements of pigs were employed. The basis for the determination of P requirements were growth performance (average daily gain or gain to feed ratio; n = 34) and bone development (n = 23). Based on the STTD P in the feed ingredients provided in NRC (2012) and ingredient composition used in the experiments, P requirements presented as total P, available P, and true total tract digestible P were converted to STTD P requirements. To obtain STTD P requirements (g/d) suggested by NRC (2012) for grow-finishing pigs (body weight &gt; 20 kg), mean body weight and sex indicated in the experiments were input into the NRC model. The statistical model for comparing the empirical data and the NRC requirements included the basis for determining P requirements in the experiments as a fixed variable and body weight as a random variable. To quantify the deviations between NRC STTD P requirement estimates and empirically determined STTD P requirements, mean percentage difference was calculated. The STTD P requirements empirically determined based on growth performance were greater than the NRC STTD P requirement estimates (5.89 vs. 4.61 g/d, SEM = 0.27; P &lt; 0.001). Moreover, the bone development-based STTD P requirements were greater than the NRC STTD P requirement estimates (6.63 vs. 4.46 g/d, SEM = 0.42; P &lt; 0.001). In conclusion, the standardized total tract digestible P requirements suggested by the NRC are less than the experimentally determined requirements.


Sign in / Sign up

Export Citation Format

Share Document