scholarly journals PSIV-B-41 Late-Breaking: The effect of TP, ALC and NAC cocktail on the oxidation-reduction system of mouse early embryo during in vitro culture

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 330-330
Author(s):  
Jing Zhou ◽  
An Gang lou ◽  
Ali Ihsan ◽  
Zhong Shu Li ◽  
Nan-zhu fang

Abstract During in vitro culture, the growth environment of embryos cannot be completely simulated as an in vivo, because the embryos are exposed to oxidative stress (OS) for a long time. However, the supplementation of antioxidants to the culture medium is undoubtedly the most effective method to reduce OS. Previous Studies have shown that TP, ALC and NAC alone have antioxidant effects on OS embryos during different stages of the oxidation-reduction reaction system respectively. Therefore in the current study we used TP, ALC and NAC in combination to improve the quality of early mice embryo and its effects on the embryo endogenous oxidation-reduction reaction system, to minimize the obstacles in the process of in vitro embryo during oxidative stress. The expression of endogenous genes in embryos was detected by RT-PCR, and the ROS and GSH levels in embryos were determined by DCHFDA and CMF2HC staining respectively. The combine supplementation of TP, ALC and NAC significantly up-regulate the expression of oxidase genes (NOX1, NOX2, NOX4, Duox1 and Duox2) in embryo, and effectively promote the expression of antioxidant enzymes genes (SOD1,SOD2,CAT, GPx1,GPx2 and GPx4) in the embryo. In addition, the supplementation of TP, ALC and NAC also up-regulated the expression of Nrf2 gene in embryo (P ﹤ 0.01)as compare to other groups. Moreover the addition of TP, ALC and NAC to embryo culture medium significantly decreased the ROS level (P ﹤ 0.01)and increased the GSH level (P ﹤ 0.01)as compare to control and other treated groups. In conclusion the present study shows that the supplementation of TP, ALC and NAC cocktail can promote the early mouse embryo development, effectively upregulate GSH and down-regulate the ROS level in early mouse embryo during IVC. Moreover it up-regulate the expression of oxidase and antioxidant enzymes and Nrf2 genes.

2021 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Gabriela Vasco ◽  
Gabriel Trueba

Opportunistic bacteria Pseudomonas aeruginosa is one of the major concerns as an etiological agent of nosocomial infections in humans. Many virulence factors used to colonize the human body are the same as those used by P. aeruginosa to thrive in the environment such as membrane transport, biofilm formation, oxidation/reduction reaction, among others. P. aeruginosa origin is mainly from the environment, the adaptation to mammalian tissues may follow a source-sink evolution model; the environment is the source of many lineages, some of them capable of adaptation to the human body. Some lineages may adapt to humans and go through reductive evolution in which some genes are lost.  The understanding of this process may be critical to implement better methods to control outbreaks in hospitals.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Martina Horvathova ◽  
Zuzana Orszaghova ◽  
Lucia Laubertova ◽  
Magdalena Vavakova ◽  
Peter Sabaka ◽  
...  

We examinedin vitroantioxidant capacity of polyphenolic extract obtained from the wood of oakQuercus robur(QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found anin vitroantioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasmain vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Roberta Ferreira Leite ◽  
Kelly Annes ◽  
Jessica Ispada ◽  
Camila Bruna de Lima ◽  
Érika Cristina dos Santos ◽  
...  

High oxygen levels during in vitro culture (IVC) can induce oxidative stress through accumulation of reactive oxygen species (ROS), negatively affecting embryo development. This study evaluated the effect of different O2 tensions during IVC on bovine blastocyst development and transcriptional status, considering transcription factors that play an essential role during early embryo development. For this purpose, embryos were produced in vitro by conventional protocols and cultured in two different oxygen tensions, physiological (5%) and atmospheric (20%). Expanded blastocysts were subjected to transcript quantitation analysis by RT-qPCR with Biomark™ HD System (Fluidigm, US), using 67 TaqMan assays specific for Bos taurus. Differences were observed in genes related to oxidation-reduction processes, DNA-dependent transcription factors, and factors related to important functional pathways for embryo development. Blastocyst rate was higher in the 5% O2 group and the number of cells was assessed, with the 5% O2 group having a higher number of cells. ROS concentration was evaluated, with a higher ROS presence in the 20% O2 group. Taken together, these results allow us to conclude that IVC of embryos at atmospheric O2 tension affects the expression of important transcription factors involved in multiple cell biology pathways that can affect embryo development, quality, and viability.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Larissa Zamparone Bergamo ◽  
Denis Vinicius Bonato ◽  
Camila Bizarro-Silva ◽  
Francieli Gesleine Capote Bonato ◽  
Tamires Korchovei Sanches ◽  
...  

Summary The aim of this study was to evaluate the follicular development, morphological integrity, and oxidative stress of preantral ovarian follicles from Bos taurus indicus females grown in vitro with ascorbic acid. Ovaries (n = 20) from Bos taurus indicus females were collected, fragmented, and were cultured in vitro for 6 or 12 days in minimum essential medium (MEM), or MEM supplemented with 50 or 100 ng/ml ascorbic acid, with an extracellular matrix of agarose gel, in an incubator at 38.5°C; every 2 days, 100% of the culture medium was replaced. The data were analyzed using the chi-squared test and/or Fisher’s exact test. In the event of a significant effect, the proportions were compared using a 2 × 2 proportion test. The oxidative stress analysis data were submitted to analysis of variance followed by the Bonferroni test. Values were considered significant when P ≤ 0.05. The addition of 100 ng/ml of ascorbic acid to the in vitro culture medium of preantral ovarian follicles from bovine females promoted follicular development, was efficient in maintaining morphological integrity, as well as the stability of reactive oxygen species, after 6 days of in vitro culture.


Heterocycles ◽  
1978 ◽  
Vol 9 (10) ◽  
pp. 1514
Author(s):  
A. S. Elina ◽  
I. S. Musatova ◽  
R. M. Titkova ◽  
E. A. Trifonova

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Bo Dam Lee ◽  
Jae-Myung Yoo ◽  
Seong Yeon Baek ◽  
Fu Yi Li ◽  
Dai-Eun Sok ◽  
...  

3,3′-Diindolylmethane (DIM), a metabolite of indole-3-carbinol present in Brassicaceae vegetables, possesses various health-promoting effects. Nonetheless, the effect of DIM on neurodegenerative diseases has not been elucidated clearly. In this study, we hypothesized DIM may protect neuronal cells against oxidative stress-induced apoptosis by promoting the formation of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes through stabilizing the activation of the tropomyosin-related kinase receptor B (TrkB) cascade and we investigated the effect of DIM on oxidative stress-mediated neurodegenerative models. DIM protected neuronal cells against oxidative stress-induced apoptosis by regulating the expression of apoptosis-related proteins in glutamate-treated HT-22 cells. Additionally, DIM improved the expression of BDNF and antioxidant enzymes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinine oxidoreductase-1, by promoting the activation of the TrkB/protein kinase B (Akt) pathway in the cells. Consistent with in vitro studies, DIM attenuated memory impairment by protecting hippocampal neuronal cells against oxidative damage in scopolamine-treated mice. Conclusionally, DIM exerted neuroprotective and antioxidant actions through the activation of both BDNF production and antioxidant enzyme formation in accordance with the TrkB/Akt pathway in neuronal cells. Such an effect of DIM may provide information for the application of DIM in the prevention of and therapy for neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document