scholarly journals PSXI-1 Effects of mineral supplementation during summer on physiological variables and milk production in Holstein dairy cows

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 389-389
Author(s):  
Andrea Dahnae del Rio-Aviles ◽  
Abelardo Correa-Calderon ◽  
Leonel Avendaño-Reyes ◽  
Milton G Thomas ◽  
R Mark Enns ◽  
...  

Abstract Summer season in northwest Mexico is characterized by hot-humid weather conditions that lead to heat stress and affect physiological and productive performance of lactating Holstein cows. Mineral supplementation has been proposed as strategy to alleviate negative effects of heat stress in dairy cattle. Thus, the objective of this study was to evaluate the effect of an injectable mineral supplement on physiological variables and milk production in Holstein cows managed during summer. Sixteen cows were randomly assigned to 1 of 2 experimental groups: Mineral-treated (TRT; n = 8) or control (CON; n = 8). The TRT group received 3 injections of Fosfosan® (10 ml, i.m., Virbac, Uruguay), on days 0, 7 and 17, considering summer onset as day 0 (June 21st), whereas group CON was untreated. Physiological variables such as respiratory rate (RR), vaginal temperature (VT) and skin-surface temperature (SST), were registered twice a week (0500-1700 h) during 6 weeks. Ambient temperature and humidity were collected to calculate the daily temperature and humidity index (THI). Data were analyzed using a mixed model with repeated measures, which included fixed effects of treatment, time and treatment*time, and sire as random effect. According to the THI, Holstein cows were exposed to heat stress during the experiment (>72 units). Cows in the TRT group showed higher (P < 0.05) milk production than CON cows (17.93±0.47 vs 17.02±0.51 kg/day) and lower (P < 0.01) VT (39.14±0.11 vs 39.46±0.15 °C). Relative to CON cows, treated cows also had lower RR (63.16±0.65 vs 64.47±0.76 breaths/min) and lower SST (33.75±0.15 vs 34.02±0.16 °C). All physiological variables showed a significant effect of time (P < 0.01). In conclusion, mineral supplementation during summer appears to improve physiological and productive performance in heat-stressed milking dairy cows; therefore, we suggest to consider this management as strategy to reduce negative effects of summer and heat stress on the dairy industry in northwest Mexico.

2015 ◽  
Vol 45 (10) ◽  
pp. 1848-1853 ◽  
Author(s):  
Donizeti Teixeira Junior ◽  
Regis Luis Missio ◽  
Mariana Paula Rossi Sforcini ◽  
Mauro Dal Secco de Oliveira ◽  
Viviane Borba Ferrari ◽  
...  

This study aimed to evaluate the productive performance of dairy cows fed with sugarcane treated with 5g kg-1 of calcium oxide (CaO) or hydroxide [Ca(OH)2]. Eight Holstein cows with 638.01±12.52kg of body weight and milk yield of 20.32±1.5kg d-1 were randomly assigned into two 4x4 Latin squares, fed with the following diets composed of corn silage (CS), fresh sugarcane (FS), sugarcane treated with calcium oxide (STCO) or calcium hydroxide (STCH) as only forage. Data collection lasted five days, after 15 days of adaptation to diets and facilities. The dry matter intake (% of body weight) was higher in diets with CS (3.08) compared to those with FS (2.67), STCO (2.73) or STCH (2.73), which did not differ. Diets with CS determined milk production adjusted for 4% fat (20.05kg d-1) similar to diets containing STCO and STCH (18.01 and 17.89kg d-1, respectively) and higher than those with FS (17.33kg d-1). The experimental diets did not alter the composition of milk. The use of sugarcane treated with Ca(OH)2 is a viable option for feeding Holstein cows with average genetic potential for milk production because it allows production and composition similar to milk dairy cows fed with corn silage, besides benefiting the logistics of feeding in the rural properties.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Elizabeth Schwegler ◽  
Augusto Schneider ◽  
Ana Rita Tavares Krause ◽  
Paula Montagner ◽  
Eduardo Schmitt ◽  
...  

 Background: Bovine mastitis causes major economic losses for milk producers by reducing the quantity and the quality of the milk or even leading to the complete loss of the mammary gland secretory capacity. During the transition period, dairy cows are susceptible to infectious diseases; therefore, markers that allow early identification of cows in higher risk of developing diseases are especially useful at this time. Therefore, the aim of this study was to evaluate serum markers in the pre and postpartum of multiparous dairy cows with clinical mastitis and with health condition in the postpartum period in a semi-extensive management system.Materials, Methods & Results: Thirty-Six Holstein cows were monitored daily during milking until 59 days postpartum and were categorized according to the pre-milking strip cup test into clinical mastitis (mastitis group (MG)) and absence of symptoms (control group (CG)) that were negative to the test, representing the health cows. All cows were reared as one group and maintained in a semi-extensive pasture-based system. Blood samples were collected weekly after morning milking via venipuncture of the coccinea vein into tubes without anticoagulant and grouped for prepartum (-21 to 0 days from calving), early postpartum (0 to 30 days from calving), and late postpartum (30 to 59 days from calving) periods. Milk production was recorded daily. The serum markers albumin, aspartate aminotransferase (AST), phosphorus, gamma-glutamyltransferase (GGT) and non-esterified fatty acids (NEFA) were measured. Statistical analyses were performed using SAS®. The cases of clinical mastitis occurred on average at 37.2 ± 4.9 days postpartum. Health cows (CG) had higher milk production compared to the mastitis group (MG) only in the late postpartum period (P < 0.05). There was no difference among groups for albumin and NEFA concentrations in all periods evaluated (P > 0.05). In the early postpartum period the AST activity was higher in CG than in MG (P = 0.02). The GGT enzyme tended to be more concentrated in the CG than in the MG during the early (P = 0.06) and late (P = 0.08) postpartum periods. Late postpartum phosphorus concentration was lower for MG than CG (P = 0.04). In the prepartum and early postpartum periods, there was no difference among groups for phosphorus concentration (P > 0.05).Discussion: A decrease in milk production in MG compared to CG observed in late postpartum period was due to the inci­dence of mastitis observed around 37 days postpartum. Cows that presented clinical mastitis in the postpartum period did not differ in the blood concentration of NEFA in the prepartum period. In the late postpartum period higher concentration of phosphorus was observed in the CG than in MG, indicating that animals affected by mastitis may be in the weakest energy status. Regarding liver health, the concentration of AST was higher in the recent postpartum period for CG, in disagree­ment with previous studies that related AST to tissue injury caused by mastitis. The GGT enzyme tended to had higher concentrations in CG than MG during the whole postpartum period and may be related to increased hepatic metabolism due to higher production. There were no changes in albumin levels among healthy and mastitis cows, indicating that this marker can not be used to predict clinical mastitis. There were no metabolic alterations in the prepartum period related to the occurrence of postpartum mastitis in multiparous cows in a semi-extensive management system.Keywords: AST, dairy cows, NEFA.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yizhe Cui ◽  
Zhuorui Shan ◽  
Lintong Hou ◽  
Qiuju Wang ◽  
Juan J. Loor ◽  
...  

This study examined the effect of mixed medicinal herbs from China in the ground form on milk yield and various blood metabolites before and after parturition in Holstein cows. Crushed Agastache rugosus, Scutellaria barbata, Pericarpium citri reticulate, and Radix glycyrrhizae were used to develop TCMF4. Thirty-two Chinese Holstein cows were randomly divided into a control group or groups receiving 0.1, 0.3, or 0.5 kg TCMF4/cow/d from −7 through 21 d relative to parturition. Blood samples for serum isolation were collected at −7, −1, 1, 7, 14, and 21 d relative to parturition and used to measure glucose, β-hydroxybutyric acid (BHBA), total protein, albumin, globulin, and alkaline phosphatase. Milk production was recorded daily for the first 21 d postpartum, and composition was analyzed at 7, 14, and 21 d. Data were analyzed using a one-way analysis of variance (ANOVA) for multiple comparisons. The average milk production during the first 21-d postpartum was 28.7 ± 6.9, 27.2 ± 7.1, 31.2 ± 6.8, and 38.5 ± 6.1 kg/d for control group and groups receiving 0.1, 0.3, or 0.5 kg TCMF4. Thus, average daily milk production increased between 9 to 34% by supplementation with TCMF4 compared with the control group. Compared with the control group, in the middle dose group, milk concentrations of lactose and total protein decreased by 21 and 19%, respectively, at d 7 around parturition, while total solids increased by 23% at d 21 in the high-dose group. Furthermore, compared with the control group, serum BHBA decreased by 50 and 20% at d −1 and 21 around parturition in the high-dose group. Overall, TCMF4 supplementation improved dry matter intake (DMI) and milk production of dairy cows during the periparturient period without adverse effects on liver function, and plasma BHBA concentrations of dairy cows tended to decrease when dietary TCMF4 increased, which suggested that TCMF4 might be used as potential additives in dairy cows to improve production performance.


1997 ◽  
Vol 1997 ◽  
pp. 21-21
Author(s):  
J.A. Benson ◽  
C.K. Reynolds ◽  
D.J. Humphries ◽  
D.E. Beever ◽  
S.M. Rutter

Fat is often fed to dairy cows as a means of increasing dietary energy concentration; however feeding fat often reduces feed intake. For many fat supplements this can be due to negative effects on rumen digestion, however feeding rumen inert fat and post ruminal infusions of fat can also depress intake although the mechanism by which this happens is not clear. The effect of fat on intake may also be influenced by stage of lactation as in early lactation fatty acid levels in the blood can be elevated. The aim of the present study was to investigate the effects of fat infusion into the abomasum on dry matter (DM) intake, milk production and metabolism of splanchnic tissues (portal drained viscera (PDV) and liver) in early and mid lactation cows.


2009 ◽  
Vol 2009 ◽  
pp. 63-63
Author(s):  
S Khalajzade ◽  
N Emam Jomeh ◽  
A Salehi ◽  
A Moghimi Esfandabadi

Milk production is significantly decreased by thermal stress. The survival and performance of an animal during heat stress periods depend on several weather factors, especially temperature and humidity. Researchers reported dramatic decreases in milk production as temperature rose above 30 degree of centigrade. Very high environmental temperature is common during the summer months in Iran. Rectal temperature is as indicator of heat tolerance and has been the most frequently used physiological variable for estimating heat tolerance in cattle. Some dairy cows are more heat tolerant and productive when subjected to heat stress. Identification and selection of heat stress resistant cattle offers the potential to increase milk yield in tropical environment. The aim of the present study was to estimate genetic parameters of heat tolerance and its relationship to milk production in Holstein Dairy Cows in Iran.


2004 ◽  
Vol 78 (3) ◽  
pp. 477-483 ◽  
Author(s):  
C. Tripaldi ◽  
G. De Rosa ◽  
F. Grasso ◽  
G. M. Terzano ◽  
F. Napolitano

AbstractTwenty-eight buffalo cows were used to evaluate the effect of housing system on a range of behavioural and physiological variables. Fourteen cows were group-housed in a loose open-sided barn with a concrete floor and 10 m2 per head as space allowance (group IS). Fourteen others were group-housed in a similar barn but they could also benefit from an outdoor yard with 500 m2 per head as space allowance, free access to potholes for wallowing and spontaneous vegetation (group TS). Animals were subjected to six sessions of instantaneous scan sampling at 10-day intervals. Behavioural variables were expressed as proportions of subjects observed in each category of posture and activity. Phytohaemagglutinin (PHA) was used to perform a skin test based on non-specific delayed type hypersensitivity, whereas 20 mg of ovalbumin were injected subcutaneously to evaluate humoral immune response. Blood samples for evaluation of cortisol concentration were collected immediately prior to exogenous porcine ACTH injection and 1, 2 and 4 h after. The metabolic status of the animals and milk production were also monitored. The proportion of idling animals was higher in group IS than in group TS (P < 0.001). More IS buffalo cows were observed eating at the manger than TS animals (P < 0.001). A higher proportion of TS animals were observed in the sun (P < 0.001). Grazing and bathing activities were recorded only for TS animals. Our findings suggest that buffalo cows kept in intensive conditions and having no access to ample yards and potholes may extend their periods of idling with negative effects on the state of welfare. Immune responses, metabolite concentrations and milk production were not affected by treatment, whereas cortisol levels were higher in IS animals (P < 0.05). The provision of a housing system similar to natural conditions was able to improve the welfare of buffalo cows as indicated by the expression of some species-specific natural behaviours. Such conditions were also associated with lower adrenal cortex response to ACTH injection, possibly as a consequence of the higher degree of initiative allowed to TS cows.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 925
Author(s):  
Zhao ◽  
Min ◽  
Zheng ◽  
Wang

Heat stress negatively impacts the health and milk production of dairy cows, and ruminal microbial populations play an important role in dairy cattle’s milk production. Currently there are no available studies that investigate heat stress-associated changes in the rumen microbiome of lactating dairy cattle. Improved understanding of the link between heat stress and the ruminal microbiome may be beneficial in developing strategies for relieving the influence of heat stress on ruminants by manipulating ruminal microbial composition. In this study, we investigated the ruminal bacterial composition and metabolites in heat stressed and non-heat stressed dairy cows. Eighteen lactating dairy cows were divided into two treatment groups, one with heat stress and one without heat stress. Dry matter intake was measured and rumen fluid from all cows in both groups was collected. The bacterial 16S rRNA genes in the ruminal fluid were sequenced, and the rumen pH and the lactate and acetate of the bacterial metabolites were quantified. Heat stress was associated with significantly decreased dry matter intake and milk production. Rumen pH and rumen acetate concentrations were significantly decreased in the heat stressed group, while ruminal lactate concentration increased. The influence of heat stress on the microbial bacterial community structure was minor. However, heat stress was associated with an increase in lactate producing bacteria (e.g., Streptococcus and unclassified Enterobacteriaceae), and with an increase in Ruminobacter, Treponema, and unclassified Bacteroidaceae, all of which utilize soluble carbohydrates as an energy source. The relative abundance of acetate-producing bacterium Acetobacter decreased during heat stress. We concluded that heat stress is associated with changes in ruminal bacterial composition and metabolites, with more lactate and less acetate-producing species in the population, which potentially negatively affects milk production.


Sign in / Sign up

Export Citation Format

Share Document