scholarly journals PSXII-20 Effects of association between monensin, calcium nitrate and tannin on enteric methane production in cannulated beef cattle

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 420-421
Author(s):  
Alice H Assumpçao ◽  
Cristiane Tropaldi ◽  
Guilherme Sene ◽  
Ramos Tseu ◽  
Flávio Perna Junior ◽  
...  

Abstract The objective of this experiment was to evaluate the association between different feed additives on ruminal fermentation parameters especially ruminal methane on cannulated beef cattle. Five Nellore cows, 480 ± 55 kg, ruminally cannulated were used. The experimental was a 5 x 5 Latin square design and the experimental unit was the animal within each period (n = 25 experimental units). The diets offered differed only by the inclusion or not of monensin, calcium nitrate or tannin, totaling five treatments: Control (without addition of additives), Monensin (30 ppm in the diet), Nitrate (3.0% of DM), Tannin (1.5% of DM) and Pool (combination of the three additives), being supplied in a basal diet with a concentrate: roughage (corn silage) ratio of 60:40. The study was divided into five periods, each one with 26 days. Sixteen days were used for adaptation to the experimental diets; ruminal fluid samples were collected at 0, 3, 6, 9 and 12h after feeding at 22nd day. To evaluate CH4 production and ammoniacal nitrogen balance, samples were incubated ex situ on equality ruminal conditions and then analyzed by gas chromatography and UV spectrophotometric, respectively. Data were analyzed using PROC MIXED of SAS and differences were declared significant at 5%. There was interaction between sampling time and treatment (P < 0001) and all the additives were efficient in decreasing the methane production in mol/g/hour (P < 0001), mol/kg/day (P < 0001) and g/kg/day (P < 0001). Comparing to the Control all additives decreased CH4 production, and decreases were 9.5% for monensin, 18.75% for tannin, 19.8% for calcium nitrate and 28.8% for the Pool (monensin, nitrate and tannin). Concentration and balance of rumen NH3-N was not affected by any treatments. It was possible to conclude that association of additives of different mechanism of action presented a partial additive effect.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 53-54
Author(s):  
Luiz Fernando Dias Batista ◽  
Madeline E Rivera ◽  
Aaron B Norris ◽  
Jordan Adams ◽  
Roberta Cracco ◽  
...  

Abstract The utilization of natural plant secondary compounds as feed additives in animal nutrition has been extensively studied because of their ability to modify digestive and metabolic functions. Condensed tannin (CT) supplementation can potentially alter ruminal fermentation, and mitigate methane (CH4) emissions. The objective of this study was to determine the effect of quebracho CT extract (QT; Schinopsis balansae) within a roughage-based diet on overall fermentability and CH4 production utilizing the in vitro gas production technique (IVGP). Twenty rumen cannulated steers (227 ± 19 kg) were randomly assigned to four dietary treatments (n=4): QT at 0, 1, 2, and 3% of DM (QT0, QT1, QT2, and QT3). A roughage-based diet containing 88% bermudagrass hay and 12% concentrate was fed daily at 2.1% of shrunk body weight. The animals were adapted to the basal diet for 24-d then introduced to predetermined treatments for 35d. Rumen inoculum was collected weekly from each steer to perform the incubations. Two hundred milligrams of air-dried base diet were incubated for 48-h with a composite rumen inoculum for each treatment over 5 wk. Kinetic analysis of cumulative 48h gas production was performed using Gasfit. Measurements of CH4 were performed via gas chromatography and digested residue was determined post-incubation. Data were analyzed using a random coefficients model. Total gas production was higher for QT0 compared to QT1 and QT3 (P = 0.001), but not different from QT2 (P = 0.554). The fractional rate of gas production was higher for QT2 compared to QT0 (P = 0.011). First and second pool gas production decreased linearly as QT inclusion increased (P = 0.042 and 0.010, respectively). There was no dietary effect in ivNDFD (P = 0.567). However, there was a linear tendency to decrease CH4 production with the addition of QT (P=0.071) likely due to changes in the microbial population.


2019 ◽  
Vol 40 (5) ◽  
pp. 2057 ◽  
Author(s):  
Sabrina Marcantonio Coneglian ◽  
Roman David Castañeda Serrano ◽  
Olga Teresa Barreto Cruz ◽  
Antonio Ferriani Branco

The objective of this study was to determine the effects of essential oils of Anacardium occidentale (Cashew) and Ricinus communis (Castor) on intake, digestibility, ruminal fermentation and excretion of purine derivatives in beef cattle fed high grain diets. Five Nellore steers fitted with ruminal cannula were used in a 5x5 Latin square design (21 days period). The treatments were control MON (0.2 g monensin animal day-1¬) and 1, 2, 4 and 8 g EO animal day-1 (Essential oils - Oligobasics®). All the animals had a basal diet, corn silage-based total mixed ration (TMR) of 80:20 concentrate:forage ratio. Intake, digestibility, ruminal fermentation and excretion of purine derivatives were determined over five consecutive days in each period. Intake and digestibility of dry matter (DM), neutral detergent fibre (NDF) and crude protein (CP) were not influenced by treatments (P > 0.05). However, increasing levels of EO showed a quadratic effect (P < 0.014) above 2 g animal day-1 on the ruminal pH. The excretion of allantoin and uric acid were not influenced by the treatments (P > 0.05), but levels above 2 g day decreased the synthesis of microbial proteins (P < 0.05). It is concluded that the EO of A. occidentale and R. comunnis effectively controlled ruminal fermentation as well as sodium monensin at the studied levels. EOs have the potential to be used in place of monensin in the studied levels.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 162-163
Author(s):  
Mariana E Garcia-Ascolani ◽  
Martin Ruiz-Moreno ◽  
Tessa M Schulmeister ◽  
Federico Tarnonsky ◽  
Sergio Roskopf ◽  
...  

Abstract An experiment was conducted to evaluate the effect of supplementing fourteen ruminally cannulated Angus crossbred steers with polyclonal antibody preparations (PAP) from avian origin against ruminal methanogens Methanobrevibacter gottschalkii Ho (PAP-Ho) and M. ruminantium M1 (PAP-M1). Steers were fed bermudagrass hay ad libitum and 2 kg d-1 of corn gluten feed. A randomized block design was used, with a 3 × 2 + 1 factorial arrangement, replicated in three periods. Factors were proportions of PAP against Ho and M1 in the mixture (100:0, 50:50, and 0:100 Ho:M1) and level of supplementation of each mixture (3 or 6 mL d-1). Control steers had no PAP supplementation. Steers were adapted to the feeding regimen for 14 d, with no PAP supplementation, followed by a 21-d treatment period. Ruminal fluid (RF) from each steer (experimental unit) was collected before PAP supplementation (h 0) and every 4 h (for a 24-h period) on d 0, 14, and 21 of treatment period for the determination of ruminal fermentation profile. In addition, RF collected at h 0 was individually mixed with McDougall’s Buffer (1:3 ratio) to inoculate serum bottles and polycarbonate tubes for the determination of methane production and in vitro fermentation profile. Treatment means were evaluated by preplanned, non-orthogonal, single-degree-of-freedom contrasts. There was no effect (P ≥ 0.48) of level of inclusion on ex situ methane production (ESMP). When PAP-M1 was used either alone or in combination with PAP-Ho, ESMP decreased (P ≤ 0.05) compared to control. Ex situ ruminal fermentation profile was not different (P ≥ 0.12) across treatments. In vivo molar proportion of propionate tended to be greater (P = 0.10) with supplementation of PAP-M1, alone or combined, compared with control. Polyclonal antibody preparations against ruminal methanogens have the potential to decrease enteric methane emissions.


Author(s):  
Catherine L Lockard ◽  
Caleb G Lockard ◽  
Wyatt N Smith ◽  
Kendall J Karr ◽  
Ben P Holland ◽  
...  

Abstract Six ruminally cannulated steers (average BW = 791 + 71 kg) were used in a replicated 3 × 3 Latin square experiment to determine the effects of roughage type on rumination, fiber mat characteristics, and rumen fermentation variables. Three roughages were included at 7% (DM basis) in a steam flaked corn-based diet; cotton burrs (CB), wheat silage (WS), or corn stalks (CS). Steers were fitted with a sensory collar to record rumination behaviors in 2-h intervals at the beginning of the experiment. Each 30-d period consisted of a 7-d of recovery, 14-d of diet adaptation, 7-d of rumination data collection (daily and bi-hourly average rumination), 1-d of rumen fluid collection, and 1-d of rumen evacuations. In situ degradation of individual roughages was determined for 4-d after period 3 evacuations. During rumen evacuations, ruminal contents were removed; the rumen fiber mat (RF) was separated from the liquid portion with a 2 mm sieve, weighed, and a subsample was dried. Data were analyzed using the MIXED procedure of SAS with steer as the experimental unit and roughage (CB, WS, and CS) as the main effect. Dry matter intake (DMI) was not different for CB and WS (P = 0.25) and greatest for steers consuming CS diet (P  &lt; 0.01). Roughage type did not influence the weight of the RF dry matter (%; DM; P = 0.92), RF weight (P = 0.69), or RF:DMI ratio (P = 0.29). Daily rumination (min/d) did not differ among roughages (P = 0.40), but min of rumination/kg of DMI was greatest for CS (18.0 min), min/kg of NDF was greatest for WS (89.8 min; P = 0.02), and min/kg of peNDF was greatest for CS (132.4 min; P  &lt; 0.01). Wheat silage had the greatest percentage of soluble DM and CB-R and CS-R (P  &lt; 0.01) had the greatest ruminal degraded DM fraction. Rumen fiber mat did not differ for roughages, although rumination min/kg of DMI and peNDF was greatest for steers consuming CS and WS. In situ degradation determined that CB-R and CS-R had the greatest percentage of ruminal degraded DM. Based on the objective of the experiment, roughage type did not influence daily rumination or fiber mat characteristics.


2020 ◽  
Vol 33 (5) ◽  
pp. 763-769
Author(s):  
Thiwakorn Ampapon ◽  
Metha Wanapat

Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle.Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice.Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered.Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 128-128
Author(s):  
Lauren Ovinge ◽  
Mitch Norman ◽  
Kaylee Wheeler ◽  
Galen E Erickson

Abstract The effect of high protein dried distillers grains plus solubles in steam flaked corn (SFC) or dry rolled corn (DRC)-based diets on rumen fermentation and nutrient digestion was evaluated. Six ruminally and duodenally cannulated heifers were utilized in a 6×6 Latin Square experiment using a 2×3 factorial treatment design. One factor was SFC or DRC-based diets, and the other factor was a control with no DGS (CON), regularly produced DDGS (DDGS), or High Protein DDGS (HiPro) included at 30% in the diet (DM basis). Data were analyzed using the MIXED procedure of SAS, with individual steer within period as the experimental unit. There was an interaction of apparent total tract starch digestibility (P 0.01), as including either DDGS or HiPro reduced starch digestibility in DRC-based diets and tended (P = 0.06) to reduce starch digestibility in SFC-based diets. Digestibility of starch was greater (P < 0.01) for SFC versus DRC-based diets across distillers treatments. Dry matter and OM apparent total tract digestibility was lowest (P < 0.01) for HiPro and DDGS was intermediate. There was no difference in molar acetate proportions (P > 0.43) between treatments. Dry rolled corn tended (P = 0.08) to have greater propionate proportion than SFC (44 vs 38%; respectively). Ammonia concentration was greater (P < 0.01) for DRC-based diets, and greatest for CON (P < 0.01) over DDGS and HiPro treatments. Average ruminal pH was unaffected by treatment (P > 0.16). Digestible energy (Mcal/kg) tended (P = 0.08) to be greater for CON over HiPro and DDGS. The use of HiPro did not affect apparent total tract nutrient digestibility as compared to DDGS in SFC or DRC-based diets. The use of either distillers product did result in a reduction in energy intake and digestibility, without affecting ruminal metabolic parameters.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 73-73
Author(s):  
Alex Pursley ◽  
Bill Biligetu ◽  
Tom Warkentin ◽  
Bart Lardner ◽  
Greg B Penner

Abstract The objective was to evaluate the effect of inclusion rate of pea hay in barley and oat hay when fed to beef cattle. Six ruminally-cannulated heifers (407 ± 38 kg) were used in a 6 × 6 Latin square with a 2 × 3 factorial design and 25-d periods. Treatments included barley or oat hay blended with pea hay to achieve inclusion rates of 0, 15, or 30% (DM basis). Pea inclusion increased DMI (P = 0.03) by 0.75 kg/d, and generally reduced sorting (P ≤ 0.006) against NDF and ADF compared to the cereal-only treatments. Pea inclusion decreased CP digestibility by 2.87% relative to cereal-only treatments, but did not affect the predicted microbial protein supply or nitrogen retention (P ≥ 0.77). Pea inclusion did not affect total ruminal SCFA concentration, but increased the molar proportions of acetate and butyrate and decreased the molar proportion of propionate (P ≤ 0.01). While cereal type did not affect DMI (P = 0.36) or total SCFA concentration (P = 0.61), use of oat hay improved DM digestibility (67.73 vs. 63.22% for oat and barley, respectively; P &lt; 0.001) and increased nitrogen retention (P = 0.03) when compared to barley. Overall, incorporating pea into cereal hay increased DMI, reduced CP digestibility, and altered ruminal fermentation.


2015 ◽  
Vol 8 (1) ◽  
pp. 163
Author(s):  
C. F. M. Nascimento ◽  
A. Berndt ◽  
L. A. Romero Solorzano ◽  
P. M. Meyer ◽  
R. T. S. Frighetto ◽  
...  

<p>The objective of this trial was to assess the methane emission rate, as well as the digestibility and ruminal fermentation parameters in animals fed <em>Urochloa brizantha</em> hay harvested at different stages of growth. Six Nellore rumen-cannulated steers (402.0 ± 51.62 kg) were assigned to a replicated 3×3 Latin square (18 experimental units). Treatments differed according to three growth stages of the forage: 15 - hay with 15 days of growth, 45 - hay with 45 days of growth and 90 - hay with 90 days of growth. Each experimental period lasted 21 days. From the 8<sup>th</sup> day, feces were sampled during 5 days to determine apparent total digestibility of dry matter and its fractions. Beginning on the 13<sup>th</sup> day and running for 7 days, methane production was evaluated using the sulfur hexafluoride (SF<sub>6</sub>) tracer technique. On the 20<sup>th</sup> day, ruminal fluid was sampled prior to and after 2, 4, 6, 8 and 10 hours post-morning feeding for evaluating pH, ammonia-N and short-chain fatty acids (SCFA). As the stage of forage growth for harvesting advanced in days, the digestibility coefficient of crude protein decreased and non-fibrous carbohydrate values increased. Methane production was affected not only by the stage of forage growth, but also by quality of its conservation after harvesting. There were significant differences among treatments when methane was expressed in g kg<sup>-1</sup> DMI, g kg<sup>-1</sup> OMI, % GE and % DE, with non-linear effect. The stage of forage growth did not influence ruminal pH, total concentration or molar proportion of SCFA, but decreased NH<sub>3</sub>-N concentration.</p>


Sign in / Sign up

Export Citation Format

Share Document