Enhancement of image contrast for carbon nanotube and polymer composite film in scanning electron microscope

Microscopy ◽  
2020 ◽  
Vol 69 (3) ◽  
pp. 167-172
Author(s):  
Yoichiro Hashimoto ◽  
Hiroyuki Ito ◽  
Masahiro Sasajima

Abstract Image contrast between carbon nanotubes (CNTs) and polytetrafluoroethylene (PTFE) in a CNT/PTFE composite film, which is difficult to obtain by conventional backscattered electron (BSE) imaging, was optimized to better elucidate the distribution of CNT in the film. Ultra-low landing energy condition (0.3 keV in this study) was used to prevent specimen damage due to electron beam irradiation. Signal acceptance maps, which represent the distributions of energy and take-off angle, were calculated to evaluate the features of the signal detection system used in this study. SEM images of this composite film were taken under several sets of conditions and analyzed using these acceptance maps. CNT and PTFE in the composite film can be clearly distinguished with material and topographic contrasts using the BSE signal under optimized energy and take-off angle ranges, even at ultra-low landing energy conditions.

Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Eisaku Oho ◽  
Kazuhiko Suzuki ◽  
Sadao Yamazaki

A correlation coefficient is often used as a measure of the strength of a linear relationship (i.e., the degree of similarity) between two sets of data in a variety of fields. However, in the field of scanning electron microscopy (SEM), it is frequently difficult to properly use the correlation coefficient because SEM images generally include severe noise, which affects the measurement of this coefficient. The current study describes a method of obtaining a correlation coefficient that is unaffected by SEM noise in principle. This correlation coefficient is obtained from a total of four SEM images, comprising two sets of two images with identical views, by calculating several covariance values. Numerical experiments confirm that the measured correlation coefficients obtained using the proposed method for noisy images are equal to those for noise-free images. Furthermore, the present method can be combined with a highly accurate and noise-robust position alignment as needed. As one application, we show that it is possible to immediately examine the degree of specimen damage due to electron beam irradiation during a certain SEM observation, which has been difficult until now.


NANO ◽  
2015 ◽  
Vol 10 (06) ◽  
pp. 1550086
Author(s):  
Hongliang Cao ◽  
Xiaoli Miao ◽  
Mengqin Zhu ◽  
Chang Li ◽  
Feifei Wei ◽  
...  

The utilization of ultrasound offers a facile tool for the synthesis of Au / AgCl hybrid particles. We have obtained the architectures of Au nanoparticles on AgCl sub-micrometer cubes by simply ultrasonic irradiating their precursors in ethylene glycol (EG). The formation process of Au / AgCl hybrid particles in the reaction solution has been studied based on the optical absorption spectra and the scanning electron microscope (SEM) images of the particles obtained at different ultrasonic irradiation stages. The dynamic changes of Au / AgCl hybrid particles under electron beam irradiation have been investigated in both SEM and in situ liquid cell transmission electron microscope (TEM). Hollow Au / AgCl hybrid particle structures have been obtained under the electron beam irradiation in liquid, with the cuboid contour shape preserved.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


Author(s):  
B. L. Armbruster ◽  
B. Kraus ◽  
M. Pan

One goal in electron microscopy of biological specimens is to improve the quality of data to equal the resolution capabilities of modem transmission electron microscopes. Radiation damage and beam- induced movement caused by charging of the sample, low image contrast at high resolution, and sensitivity to external vibration and drift in side entry specimen holders limit the effective resolution one can achieve. Several methods have been developed to address these limitations: cryomethods are widely employed to preserve and stabilize specimens against some of the adverse effects of the vacuum and electron beam irradiation, spot-scan imaging reduces charging and associated beam-induced movement, and energy-filtered imaging removes the “fog” caused by inelastic scattering of electrons which is particularly pronounced in thick specimens.Although most cryoholders can easily achieve a 3.4Å resolution specification, information perpendicular to the goniometer axis may be degraded due to vibration. Absolute drift after mechanical and thermal equilibration as well as drift after movement of a holder may cause loss of resolution in any direction.


Author(s):  
Wei-Chih Wang ◽  
Jian-Shing Luo

Abstract In this paper, we revealed p+/n-well and n+/p-well junction characteristic changes caused by electron beam (EB) irradiation. Most importantly, we found a device contact side junction characteristic is relatively sensitive to EB irradiation than its whole device characteristic; an order of magnitude excess current appears at low forward bias region after 1kV EB acceleration voltage irradiation (Vacc). Furthermore, these changes were well interpreted by our Monte Carlo simulation results, the Shockley-Read Hall (SRH) model and the Generation-Recombination (G-R) center trap theory. In addition, four essential examining items were suggested and proposed for EB irradiation damage origins investigation and evaluation. Finally, by taking advantage of the excess current phenomenon, a scanning electron microscope (SEM) passive voltage contrast (PVC) fault localization application at n-FET region was also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document