scholarly journals Carbon and nutrient physiology in shrubs at the upper limits: a multi-species study

2020 ◽  
Author(s):  
Xue Wang ◽  
Fei-Hai Yu ◽  
Yong Jiang ◽  
Mai-He Li

Abstract Aims Carbon and nutrient physiology of trees at their upper limits have been extensively studied, but those of shrubs at their upper limits have received much less attention. The aim of this study is to examine the general patterns of non-structural carbohydrates (NSCs), nitrogen (N) and phosphorous (P) in shrubs at the upper limits, and to assess whether such patterns are similar to those in trees at the upper limits. Methods Across Eurasia, we measured the concentrations of soluble sugars, starch, total NSCs, N and P in leaves, branches and fine roots (< 0.5 cm in diameter) of five shrub species growing at both the upper limits and lower elevations in both summer (peak growing season) and winter (dormancy season). Important Findings Neither elevation nor season had significant effects on tissue N and P concentrations, except for lower P concentrations in fine roots in winter than in summer. Total NSCs and soluble sugars in branches were significantly higher in winter than in summer. There were significant interactive effects between elevation and season for total NSCs, starch, soluble sugars and the ratio of soluble sugar to starch in fine roots, showing lower soluble sugars and starch in fine roots at the upper limits than at the lower elevations in winter but not in summer. These results suggest that the carbon physiology of roots in winter may play an important role in determining the upward distribution of shrubs, like that in the alpine tree-line trees.

HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.


2014 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Izabela Zawiska ◽  
Piotr Siwek

ABSTRACT The results of two years (2010-2011) of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2) on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1) were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were planted on mulches in the field at a spacing of 50 × 100 cm. The mulch was maintained throughout the growing season. A plot that remained unmulched served as the control. Tomatoes were harvested once a week. The fruits were evaluated for L-ascorbic acid, dry matter, soluble sugars and nitrate content. In 2011, the analysis of the plant material showed that the concentration of L-ascorbic acid was about 23% higher in the tomato fruits harvested from plants grown on biodegradable PLA 61 g m-2 mulch in comparison to the control. A similar effect was demonstrated for the soluble sugar concentration in 2011 for both types of nonwovens.


1997 ◽  
Vol 122 (6) ◽  
pp. 856-862 ◽  
Author(s):  
Muntubani D.S. Nzima ◽  
George C. Martin ◽  
Chic Nishijima

The objective of this investigation was to determine the dynamics of carbohydrate use as revealed by soluble sugar and starch concentration in leaves, inflorescence buds, rachises, nuts, current and 1-year-old wood, and primary and tertiary scaffold branches and roots (≤10 mm in diameter) of alternate-bearing `Kerman' pistachio (Pistachia vera L.) trees that were in their natural bearing cycles. Two hypotheses were tested. First, carbohydrate concentration is greater early in the growing season in organs examined from heavily cropping (“on”) than light cropping (“off”) trees. This hypothesis was affirmed as judged by soluble sugar and starch concentration in leaves, inflorescence buds, rachises, nuts, current and 1-year-old wood, and primary and tertiary branches and roots of “on” compared to “off” trees. Second, carbohydrate concentration remains high in “on” tree organs as the first wave of inflorescence bud and nut abscission occurs early in the growing season. This hypothesis was also affirmed. In fact, soluble sugars and starch remained high in “on” trees through full bloom FB + 60 days (FB + 60) as inflorescence bud and nut abscission occurred. In the persisting “on” tree inflorescence buds, sharp decreases in soluble sugars and starch were evident by the final sample date when “off” tree inflorescence buds contained a 13 times greater concentration of soluble sugars and starch than “on” tree buds. At that time, “off” tree inflorescence buds contained 50% more dry mass than “on” tree inflorescence buds. After FB + 60, “on” tree soluble sugars and starch declined in all organs as nut growth occurred. During the same time period, organs of “off” trees began to accumulate greater concentrations of soluble sugars and starch and exceeded concentrations measured in organs of “on” trees.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 511a-511
Author(s):  
L.H. Comas ◽  
D.M. Eissenstat ◽  
A.N. Lakso ◽  
R. Dunst

Improved cultural practices in grape require a better understanding of root growth and physiology. Seasonal root dynamics were examined in mature `Concord' vines with balanced or minimal-pruning, and with or without supplemental irrigation in Fredonia, N.Y. Fine roots were continuously produced during the growing season starting in mid-June around time of bloom. Roots began to die in September at verasion. Minimal-pruned vines produced more roots than balanced-pruned vines, with the minimal-pruned/unirrigated vines producing the most roots. Irrigation and pruning delayed fine root production at the beginning of the growing season. Peak fine root flush was 16 June to 21 July 1997 for the minimal-pruned/unirrigated treatment, while peak flush was 7 July to 2 Sept. 1997 for balanced-pruned/irrigated treatment. In minimal-pruned vines, many roots were observed down to depths of 120 cm. In contrast, balanced-pruned vines had very few fine roots deeper than 40 cm. From initial observations, median lifespan of fine roots was 5 to 9.5 weeks, depending on treatment and depth in soil. Fine roots lived longer in the top 15-cm than in the 16- to 30-cm layer of soil in all treatments. Both minimal pruning and irrigation increased root lifespan. Fine roots had the shortest lifespan in the balanced-pruned/unirrigated treatment and the longest lifespan in the minimal-pruned/irrigated treatment.


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


1983 ◽  
Vol 63 (2) ◽  
pp. 415-420 ◽  
Author(s):  
D. G. GREEN

Alfa, a relatively nonhardy alfalfa cultivar continued to accumulate, on a dry weight basis, fructose, α- and β-D-glucose, sucrose and maltose during the latter stages of cold hardening. Rambler, a hardier alfalfa cultivar conversely showed a decrease for these soluble sugars with hardening. Frontier rye, a very hardy winter habit cereal showed decreases in these soluble sugars plus melibiose during the same hardening period. These results support the hypothesis that hardy cereals and alfalfa undergo a decrease in soluble sugars with hardening, while less hardy cereals and alfalfa continue to increase in content of soluble sugars. Manitou wheat appeared not to fit this hypothesis and showed the decreased soluble sugars usually associated with hardy cultivars. Although Manitou is a spring type wheat, one of its parents, Thatcher, does contain gene(s) for the winter habit.Key words: Sugar, cold hardening, wheat, rye, alfalfa


2021 ◽  
Author(s):  
Lynn Doran ◽  
Amanda P. De Souza

Quantification of total soluble sugars (as glucose) in plant tissue extracts via the sulfuric phenol method adapted for 96 well plates.


2003 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
José Carlos da Silva ◽  
José Donizeti Alves ◽  
Amauri Alves de Alvarenga ◽  
Marcelo Murad Magalhães ◽  
Dárlan Einstein do Livramento ◽  
...  

One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.


2010 ◽  
Vol 40 (4) ◽  
pp. 781-786 ◽  
Author(s):  
Fábio Luiz Partelli ◽  
Henrique Duarte Vieira ◽  
Ana Paula Dias Rodrigues ◽  
Isabel Pais ◽  
Eliemar Campostrini ◽  
...  

The present research aimed to characterize some biochemical responses of Coffea canephora (clones 02 and 153) and C. arabica (Catucaí IPR 102) genotypes subjected to low positive temperatures, helping to elucidate the mechanisms involved in cold tolerance. For that, one year old plants were subjected successively to 1) a temperature decrease (0.5°C a day) from 25/20°C to 13/8°C (acclimation period), 2) a three day chilling cycle (3x13/4°C) and to 3) a recovery period of 14 days (25/20°C). In Catucaí (less cold sensitive when compared to clone 02) there was an increased activity in the respiratory enzymes malate dehydrogenase and pyruvate kinase. Furthermore, Catucaí showed significant increases along the cold imposition and the higher absolute values after chilling exposure of the soluble sugars (sucrose, glucose, fructose, raffinose, arabinose and mannitol) that are frequently involved in osmoregulation and membrane stabilization/protection. The analysis of respiratory enzymes and of soluble sugar balance may give valuable information about the cold acclimation/tolerance mechanisms, contributing to a correct selection and breeding of Coffea sp. genotypes.


2017 ◽  
Vol 27 (3) ◽  
pp. 206-216 ◽  
Author(s):  
Juliana F. Santos ◽  
Lynnette M.A. Dirk ◽  
A. Bruce Downie ◽  
Mauricio F.G. Sanches ◽  
Roberval D. Vieira

AbstractObtaining corn hybrid seeds (Zea mays L.) with high vigour depends on the parental lines and the direction of the cross, and this relates to seed desiccation tolerance and composition. This research studied reciprocal crosses between pairs of proprietary, elite parent lines (L1 and L5; L2 and L4) producing hybrid seeds with different qualities attempting to correlate vigour with seed composition, focusing on storage proteins, starch and soluble sugar amounts. Four corn hybrid seed lots produced from reciprocal crosses were compared (HS 15 with HS 51, and HS 24 with HS 42) by assessing germination, vigour, and seedling emergence in the field. Seed composition was assessed in mature, dehydrated seeds. Proteins were extracted, quantified, and analysed by electrophoresis and densitometry. Starch amounts were assessed using a kit and soluble sugars were determined using high performance liquid chromatography with pulsed electrochemical detection. The L1 and L2 lineages, used as female parents, provided seeds with lower vigour; however, the quantification of major protein bands, and sucrose, raffinose and stachyose were similar between seed lot pairs. While both total seed protein and starch varied between reciprocal hybrids for one of the two sets of crosses, the amounts of neither correlated with seed vigour. Interestingly, hybrids with low seed vigour (HS 15, HS 24) accumulated greater amounts of fructose relative to their reciprocal; correlation analysis confirmed these results. We demonstrate different effects on seed vigour dependent on the maternal parent in reciprocal crosses producing hybrid corn seeds. We also show that vigour is negatively correlated with seed reducing sugar contents.


Sign in / Sign up

Export Citation Format

Share Document