scholarly journals Cold induced changes on sugar contents and respiratory enzyme activities in coffee genotypes

2010 ◽  
Vol 40 (4) ◽  
pp. 781-786 ◽  
Author(s):  
Fábio Luiz Partelli ◽  
Henrique Duarte Vieira ◽  
Ana Paula Dias Rodrigues ◽  
Isabel Pais ◽  
Eliemar Campostrini ◽  
...  

The present research aimed to characterize some biochemical responses of Coffea canephora (clones 02 and 153) and C. arabica (Catucaí IPR 102) genotypes subjected to low positive temperatures, helping to elucidate the mechanisms involved in cold tolerance. For that, one year old plants were subjected successively to 1) a temperature decrease (0.5°C a day) from 25/20°C to 13/8°C (acclimation period), 2) a three day chilling cycle (3x13/4°C) and to 3) a recovery period of 14 days (25/20°C). In Catucaí (less cold sensitive when compared to clone 02) there was an increased activity in the respiratory enzymes malate dehydrogenase and pyruvate kinase. Furthermore, Catucaí showed significant increases along the cold imposition and the higher absolute values after chilling exposure of the soluble sugars (sucrose, glucose, fructose, raffinose, arabinose and mannitol) that are frequently involved in osmoregulation and membrane stabilization/protection. The analysis of respiratory enzymes and of soluble sugar balance may give valuable information about the cold acclimation/tolerance mechanisms, contributing to a correct selection and breeding of Coffea sp. genotypes.

2020 ◽  
Vol 21 (6) ◽  
pp. 1942 ◽  
Author(s):  
Magda Pál ◽  
Tibor Janda ◽  
Imre Majláth ◽  
Gabriella Szalai

The exposure of plants to non-lethal low temperatures may increase their tolerance to a subsequent severe chilling stress. To some extent, this is also true for cold-sensitive species, including maize. In the present work, based on our previous microarray experiment, the differentially expressed genes with phenylpropanoid pathways in the focus were further investigated in relation to changes in certain phenolic compounds and other plant growth regulators. Phenylalanine ammonia lyase (PAL) was mainly activated under limited light conditions. However, light-induced anthocyanin accumulation occurred both in the leaves and roots. Chilling stress induced the accumulation of salicylic acid (SA), but this accumulation was moderated in the cold-acclimated plants. Acclimation also reduced the accumulation of jasmonic acid (JA) in the leaves, which was rather induced in the roots. The level of abscisic acid (ABA) is mainly related to the level of the stress, and less indicated the level of the acclimation. The highest glutathione (GSH) amount was observed during the recovery period in the leaves of plants that were cold acclimated at growth light, while their precursors started to accumulate GSH even during the chilling. In conclusion, different light conditions during the cold acclimation period differentially affected certain stress-related mechanisms in young maize plants and changes were also light-dependent in the root, not only in the leaves.


2020 ◽  
Vol 62 ◽  
pp. 32-38
Author(s):  
E. A. Dolmatov ◽  
R. B. Borzayev ◽  
A. N. Shaipov

The results of the study of the duration of the juvenile period of indigenous Chechen willow leaf pear genotypes (Pyrus salicifolia Pall.) are given in connection with the acceleration of the breeding process and the use of selected forms in pear breeding for high precocity. The studies were carried out in 2016-2019 at OOO “Orchards of Chechnya” in accordance with the Agreement on creative cooperation with the Russian Research Institute of Fruit Crop Breeding. The work was carried out in accordance with generally accepted programs and methods. The objects of the study were one-year and two-year-old pear seedlings obtained from sowing seeds of selected dwarf and low-growing local Chechen forms of willow pear (P. salicifolia Pall.), laying fruit buds on annual growths and seedlings of Caucasian pear (P. caucasica Fed.), 20 500 pcs. of each specie. The aim of the research was to study the potential of precocity of willow pear seedlings and to reveal of selected forms with the greatest degree of this trait. Stratified seeds were sown in the sowing department of the OOO “Orchards of Chechnya” production nursery in April, 2017. The seedlings were grown according to the common technology in dryland conditions on the plot with chestnut soil. The first fl owering of plants was noted in the spring, 2019. As a result of the research, for the first time on a large number of the experimental material it was found that in the off spring of the indigenous Chechen willow leaf pear genotypes, the selection of a little more than 2% of seedlings with a very short juvenile period (2 years) was possible. They are of great interest in accelerating the breeding process and in the selection of new pear varieties with high precocity. 20 willow leaf pear genotypes were selected for the further use in breeding for high precocity and as sources of the trait of short juvenile period.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Xiaodeng Shi ◽  
Siyu Chen ◽  
Zhongkui Jia

The effects of varieties, concentrations, and number of applications of plant growth retardants (PGRs) on the morphological, physiological, and endogenous hormones of Magnolia wufengensis L.Y. Ma et L. R. Wang were assessed to obtain the most suitable dwarfing protocol for M. wufengensis and to provide theoretical support and technical guidance for the cultivation and promotion of this species. One-year-old M. wufengensis ‘Jiaohong No. 2’ grafted seedlings served as the experimental materials. In the first part of the experiment, three PGRs (uniconazole, paclobutrazol, prohexadione calcium), three concentrations (500, 1000, 1500 ppm), and three applications (one, three, and five applications) were applied in dwarfing experiments to perform L9 (34) orthogonal tests. In the second part of the study, dwarfing experiments were supplemented with different high uniconazole concentrations (0, 1500, 2000, 2500 ppm). Spraying 1500 ppm uniconazole five times achieved the best M. wufengensis dwarfing effect, related indicators of M. wufengensis under this treatment were better than other treatment combinations. Here, M. wufengensis plant height, internode length, scion diameter, and node number were significantly reduced by 56.9%, 62.6%, 72.8%, and 74.4%, respectively, compared with the control group. This treatment increased superoxide dismutase (SOD) activity by 66.0%, peroxidase (POD) activity by 85.0%, soluble protein contents by 43.3%, and soluble sugar contents by 27.6%, and reduced malondialdehyde (MDA) contents by 32.1% in leaves of M. wufengensis compared with the control. The stress resistance of M. wufengensis was enhanced. The treatment also reduced gibberellin (GA3) levels by 73.0%, auxin (IAA) by 58.0%, and zeatin (ZT) by 70.6%, and increased (abscisic acid) ABA by 98.1% in the leaves of M. wufengensis. The uniconazole supplementation experiment also showed that 1500 ppm was the optimal uniconazole concentration. The leaves exhibited abnormalities such as crinkling or adhesion when 2000 or 2500 ppm was applied. Given the importance of morphological indicators and dwarfing for the ornamental value of M. wufengensis, the optimal dwarfing treatment for M. wufengensis was spraying 1500 ppm uniconazole five times.


2020 ◽  
Author(s):  
Xue Wang ◽  
Fei-Hai Yu ◽  
Yong Jiang ◽  
Mai-He Li

Abstract Aims Carbon and nutrient physiology of trees at their upper limits have been extensively studied, but those of shrubs at their upper limits have received much less attention. The aim of this study is to examine the general patterns of non-structural carbohydrates (NSCs), nitrogen (N) and phosphorous (P) in shrubs at the upper limits, and to assess whether such patterns are similar to those in trees at the upper limits. Methods Across Eurasia, we measured the concentrations of soluble sugars, starch, total NSCs, N and P in leaves, branches and fine roots (< 0.5 cm in diameter) of five shrub species growing at both the upper limits and lower elevations in both summer (peak growing season) and winter (dormancy season). Important Findings Neither elevation nor season had significant effects on tissue N and P concentrations, except for lower P concentrations in fine roots in winter than in summer. Total NSCs and soluble sugars in branches were significantly higher in winter than in summer. There were significant interactive effects between elevation and season for total NSCs, starch, soluble sugars and the ratio of soluble sugar to starch in fine roots, showing lower soluble sugars and starch in fine roots at the upper limits than at the lower elevations in winter but not in summer. These results suggest that the carbon physiology of roots in winter may play an important role in determining the upward distribution of shrubs, like that in the alpine tree-line trees.


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


1983 ◽  
Vol 63 (2) ◽  
pp. 415-420 ◽  
Author(s):  
D. G. GREEN

Alfa, a relatively nonhardy alfalfa cultivar continued to accumulate, on a dry weight basis, fructose, α- and β-D-glucose, sucrose and maltose during the latter stages of cold hardening. Rambler, a hardier alfalfa cultivar conversely showed a decrease for these soluble sugars with hardening. Frontier rye, a very hardy winter habit cereal showed decreases in these soluble sugars plus melibiose during the same hardening period. These results support the hypothesis that hardy cereals and alfalfa undergo a decrease in soluble sugars with hardening, while less hardy cereals and alfalfa continue to increase in content of soluble sugars. Manitou wheat appeared not to fit this hypothesis and showed the decreased soluble sugars usually associated with hardy cultivars. Although Manitou is a spring type wheat, one of its parents, Thatcher, does contain gene(s) for the winter habit.Key words: Sugar, cold hardening, wheat, rye, alfalfa


2021 ◽  
Author(s):  
Lynn Doran ◽  
Amanda P. De Souza

Quantification of total soluble sugars (as glucose) in plant tissue extracts via the sulfuric phenol method adapted for 96 well plates.


2003 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
José Carlos da Silva ◽  
José Donizeti Alves ◽  
Amauri Alves de Alvarenga ◽  
Marcelo Murad Magalhães ◽  
Dárlan Einstein do Livramento ◽  
...  

One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L.) seedlings with reduced (low) and high (normal) levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.


2017 ◽  
Vol 27 (3) ◽  
pp. 206-216 ◽  
Author(s):  
Juliana F. Santos ◽  
Lynnette M.A. Dirk ◽  
A. Bruce Downie ◽  
Mauricio F.G. Sanches ◽  
Roberval D. Vieira

AbstractObtaining corn hybrid seeds (Zea mays L.) with high vigour depends on the parental lines and the direction of the cross, and this relates to seed desiccation tolerance and composition. This research studied reciprocal crosses between pairs of proprietary, elite parent lines (L1 and L5; L2 and L4) producing hybrid seeds with different qualities attempting to correlate vigour with seed composition, focusing on storage proteins, starch and soluble sugar amounts. Four corn hybrid seed lots produced from reciprocal crosses were compared (HS 15 with HS 51, and HS 24 with HS 42) by assessing germination, vigour, and seedling emergence in the field. Seed composition was assessed in mature, dehydrated seeds. Proteins were extracted, quantified, and analysed by electrophoresis and densitometry. Starch amounts were assessed using a kit and soluble sugars were determined using high performance liquid chromatography with pulsed electrochemical detection. The L1 and L2 lineages, used as female parents, provided seeds with lower vigour; however, the quantification of major protein bands, and sucrose, raffinose and stachyose were similar between seed lot pairs. While both total seed protein and starch varied between reciprocal hybrids for one of the two sets of crosses, the amounts of neither correlated with seed vigour. Interestingly, hybrids with low seed vigour (HS 15, HS 24) accumulated greater amounts of fructose relative to their reciprocal; correlation analysis confirmed these results. We demonstrate different effects on seed vigour dependent on the maternal parent in reciprocal crosses producing hybrid corn seeds. We also show that vigour is negatively correlated with seed reducing sugar contents.


2008 ◽  
Vol 32 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Renata Braga Souza Lima ◽  
José Francisco de Carvalho Gonçalves ◽  
Silvana Cristina Pando ◽  
Andréia Varmes Fernandes ◽  
André Luis Wendt dos Santos

This study aimed to characterize protein, oil, starch and soluble sugar mobilization as well as the activity of alpha-amylase during rosewood seed germination. Germination test was carried out at 25°C and the following parameters were analyzed: percentage of germination, initial, average, and final germination time. Seed reserve quantification was monitored in quiescent seeds and during different stages of radicle growth. Starch mobilization was studied in function of a-amylase activity. Germination reached 87.5% at the initial, average, and final time of 16, 21 and 30 days, respectively. Oil mobilization showed a negative linear behavior, decreasing 40% between the first and the last stage analyzed, whereas protein levels increased 34.7% during the initial period of germination. Starch content (46.4%) was the highest among those of the metabolites analyzed and starch mobilization occurred inversely to the observed for soluble sugars; alpha-amylase activity increased until the 15th day, a period before radicle emission and corresponding to the highest starch mobilization. The high percentage of rosewood seed germination may be related to the controlled condition used in the germination chamber as well as to high seed reserve mobilization, in special oil and starch.


Sign in / Sign up

Export Citation Format

Share Document