scholarly journals Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine biosynthesis and lignin biosynthesis

2020 ◽  
Vol 71 (10) ◽  
pp. 3080-3093
Author(s):  
Jorge El-Azaz ◽  
Fernando de la Torre ◽  
María Belén Pascual ◽  
Sandrine Debille ◽  
Francis Canlet ◽  
...  

Abstract Biogenesis of the secondary cell wall in trees involves the massive biosynthesis of the phenylalanine-derived polymer lignin. Arogenate dehydratase (ADT) catalyzes the last, and rate-limiting, step of the main pathway for phenylalanine biosynthesis. In this study, we found that transcript levels for several members of the large ADT gene family, including ADT-A and ADT-D, were enhanced in compression wood of maritime pine, a xylem tissue enriched in lignin. Transcriptomic analysis of maritime pine silenced for PpMYB8 revealed that this gene plays a critical role in coordinating the deposition of lignin with the biosynthesis of phenylalanine. Specifically, it was found that ADT-A and ADT-D were strongly down-regulated in PpMYB8-silenced plants and that they were transcriptionally regulated through direct interaction of this transcription factor with regulatory elements present in their promoters. Another transcription factor, PpHY5, exhibited an expression profile opposite to that of PpMYB8 and also interacted with specific regulatory elements of ADT-A and ADT-D genes, suggesting that it is involved in transcriptional regulation of phenylalanine biosynthesis. Taken together, our results reveal that PpMYB8 and PpHY5 are involved in the control of phenylalanine formation and its metabolic channeling for lignin biosynthesis and deposition during wood formation in maritime pine.

2016 ◽  
Vol 213 (1) ◽  
pp. 287-299 ◽  
Author(s):  
Marçal Soler ◽  
Anna Plasencia ◽  
Romain Larbat ◽  
Cécile Pouzet ◽  
Alain Jauneau ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
YiMing Sun ◽  
Chunxue Jiang ◽  
Ruiqi Jiang ◽  
Fengying Wang ◽  
Zhenguo Zhang ◽  
...  

Wood formation is a complicated process under the control of a large set of transcription factors. NAC transcription factors are considered “master switches” in this process. However, few NAC members have been cloned and characterized in Eucalyptus, which is one of the most economically important woody plants. Here, we reported an NAC transcription factor from Eucalyptus grandis, EgNAC141, which has no Arabidopsis orthologs associated with xylogenesis-related processes. EgNAC141 was predominantly expressed in lignin-rich tissues, such as the stem and xylem. Overexpression of EgNAC141 in Arabidopsis resulted in stronger lignification, larger xylem, and higher lignin content. The expression of lignin biosynthetic genes in transgenic plants was significantly higher compared with wild-type plants. The transient expression of EgNAC141 activated the expression of Arabidopsis lignin biosynthetic genes in a dual-luciferase assay. Overall, these results showed that EgNAC141 is a positive regulator of lignin biosynthesis and may help us understand the regulatory mechanism of wood formation.


2011 ◽  
Vol 89 (6) ◽  
pp. 562-577 ◽  
Author(s):  
Annie Dubé ◽  
Jean-François Harrisson ◽  
Geneviève Saint-Gelais ◽  
Carl Séguin

Metal-responsive transcription factor-1 (MTF-1) is essential for the induction of genes encoding metallothionein by metals and hypoxia. Here, we studied the mechanism controlling the activation of MTF-1 by hypoxia. Hypoxia activation of Mt gene transcription is dependent on the presence of metal regulatory elements (MREs) in the promoter of Mt genes. We showed that MREa and MREd are the main elements controlling mouse Mt-1 gene induction by hypoxia. Transfection experiments in Mtf-1-null cells showed that MTF-1 is essential for induction by hypoxia. Chromatin immunoprecipitation analysis showed that MTF-1 DNA-binding activity was strongly enhanced in the presence of zinc but not by hypoxia. Notably, hypoxia inducible factor- (HIF) 1α was recruited to the Mt-1 promoter in response to hypoxia but not to zinc. MTF-1 activation was inhibited by PKC, JNK, and PI3K inhibitors and by the electron transport chain inhibitors rotenone and myxothiazol, but not by the antioxidant N-acetylcysteine. We showed that prolyl-hydroxylase inhibitors can activate MTF-1, but this activation requires the presence of HIF-1α. Finally, HIF-dependent transcription is enhanced in the presence of MTF-1 and induction of an MRE promoter is stimulated by HIF-1α, thus indicating cooperation between these 2 factors. However, coimmunoprecipitation experiments did not suggest direct interaction between MTF-1 and HIF-1α.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


2009 ◽  
Vol 83 (23) ◽  
pp. 12512-12525 ◽  
Author(s):  
Nathalie Dutheil ◽  
Els Henckaerts ◽  
Erik Kohlbrenner ◽  
R. Michael Linden

ABSTRACT The nonpathogenic human adeno-associated virus type 2 (AAV-2) has adopted a unique mechanism to site-specifically integrate its genome into the human MBS85 gene, which is embedded in AAVS1 on chromosome 19. The fact that AAV has evolved to integrate into this ubiquitously transcribed region and that the chromosomal motifs required for integration are located a few nucleotides upstream of the translation initiation start codon of MBS85 suggests that the transcriptional activity of MBS85 might influence site-specific integration and thus might be involved in the evolution of this mechanism. In order to begin addressing this question, we initiated the characterization of the human MBS85 promoter region and compared its transcriptional activity to that of the AAV-2 p5 promoter. Our results clearly indicate that AAVS1 is defined by a complex transcriptional environment and that the MBS85 promoter shares key regulatory elements with the viral p5 promoter. Furthermore, we provide evidence for bidirectional MBS85 promoter activity and demonstrate that the minimal motifs required for AAV site-specific integration are present in the 5′ untranslated region of the gene and play a posttranscriptional role in the regulation of MBS85 expression. These findings should provide a framework to further elucidate the complex interactions between the virus and its cellular host in this unique pathway to latency.


2001 ◽  
Vol 75 (13) ◽  
pp. 5796-5811 ◽  
Author(s):  
Tina Nilsson ◽  
Henrik Zetterberg ◽  
Yuyan Camilla Wang ◽  
Lars Rymo

ABSTRACT The identification of the cellular factors that control the transcription regulatory activity of the Epstein-Barr virus C promoter (Cp) is fundamental to the understanding of the molecular mechanisms that control virus latent gene expression. Using transient transfection of reporter plasmids in group I phenotype B-lymphoid cells, we have previously shown that the −248 to −55 region (−248/−55 region) of Cp contains elements that are essential fororiPI-EBNA1-dependent as well asoriPI-EBNA1-independent activation of the promoter. We now establish the importance of this region by a detailed mutational analysis of reporter plasmids carrying Cp regulatory sequences together with or without oriPI. The reporter plasmids were transfected into group I phenotype Rael cells and group III phenotype cbc-Rael cells, and the Cp activity measured was correlated with the binding of candidate transcription factors in electrophoretic mobility shift assays and further assessed in cotransfection experiments. We show that the NF-Y transcription factor interacts with the previously identified CCAAT box in the −71/−63 Cp region (M. T. Puglielli, M. Woisetschlaeger, and S. H. Speck, J. Virol. 70:5758–5768, 1996). We also show that members of the C/EBP transcription factor family interact with a C/EBP consensus sequence in the −119/−112 region of Cp and that this interaction is important for promoter activity. A central finding is the identification of a GC-rich sequence in the −99/−91 Cp region that is essential fororiPI-EBNA1-independent as well asoriPI-EBNA1-dependent activity of the promoter. This region contains overlapping binding sites for Sp1 and Egr-1, and our results suggest that Sp1 is a positive and Egr-1 is a negative regulator of Cp activity. Furthermore, we demonstrate that a reporter plasmid that in addition to oriPI contains only the −111/+76 region of Cp still retains the ability to be activated by EBNA1.


2009 ◽  
Vol 69 (8) ◽  
pp. 3501-3509 ◽  
Author(s):  
Qiang Li ◽  
Nu Zhang ◽  
Zhiliang Jia ◽  
Xiangdong Le ◽  
Bingbing Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document