scholarly journals TheEucalyptuslinker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation

2016 ◽  
Vol 213 (1) ◽  
pp. 287-299 ◽  
Author(s):  
Marçal Soler ◽  
Anna Plasencia ◽  
Romain Larbat ◽  
Cécile Pouzet ◽  
Alain Jauneau ◽  
...  
2020 ◽  
Vol 71 (10) ◽  
pp. 3080-3093
Author(s):  
Jorge El-Azaz ◽  
Fernando de la Torre ◽  
María Belén Pascual ◽  
Sandrine Debille ◽  
Francis Canlet ◽  
...  

Abstract Biogenesis of the secondary cell wall in trees involves the massive biosynthesis of the phenylalanine-derived polymer lignin. Arogenate dehydratase (ADT) catalyzes the last, and rate-limiting, step of the main pathway for phenylalanine biosynthesis. In this study, we found that transcript levels for several members of the large ADT gene family, including ADT-A and ADT-D, were enhanced in compression wood of maritime pine, a xylem tissue enriched in lignin. Transcriptomic analysis of maritime pine silenced for PpMYB8 revealed that this gene plays a critical role in coordinating the deposition of lignin with the biosynthesis of phenylalanine. Specifically, it was found that ADT-A and ADT-D were strongly down-regulated in PpMYB8-silenced plants and that they were transcriptionally regulated through direct interaction of this transcription factor with regulatory elements present in their promoters. Another transcription factor, PpHY5, exhibited an expression profile opposite to that of PpMYB8 and also interacted with specific regulatory elements of ADT-A and ADT-D genes, suggesting that it is involved in transcriptional regulation of phenylalanine biosynthesis. Taken together, our results reveal that PpMYB8 and PpHY5 are involved in the control of phenylalanine formation and its metabolic channeling for lignin biosynthesis and deposition during wood formation in maritime pine.


2021 ◽  
Vol 12 ◽  
Author(s):  
YiMing Sun ◽  
Chunxue Jiang ◽  
Ruiqi Jiang ◽  
Fengying Wang ◽  
Zhenguo Zhang ◽  
...  

Wood formation is a complicated process under the control of a large set of transcription factors. NAC transcription factors are considered “master switches” in this process. However, few NAC members have been cloned and characterized in Eucalyptus, which is one of the most economically important woody plants. Here, we reported an NAC transcription factor from Eucalyptus grandis, EgNAC141, which has no Arabidopsis orthologs associated with xylogenesis-related processes. EgNAC141 was predominantly expressed in lignin-rich tissues, such as the stem and xylem. Overexpression of EgNAC141 in Arabidopsis resulted in stronger lignification, larger xylem, and higher lignin content. The expression of lignin biosynthetic genes in transgenic plants was significantly higher compared with wild-type plants. The transient expression of EgNAC141 activated the expression of Arabidopsis lignin biosynthetic genes in a dual-luciferase assay. Overall, these results showed that EgNAC141 is a positive regulator of lignin biosynthesis and may help us understand the regulatory mechanism of wood formation.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 619 ◽  
Author(s):  
Zhenhao Guo ◽  
Hui Hua ◽  
Jin Xu ◽  
Jiaxing Mo ◽  
Hui Zhao ◽  
...  

Cryptomeria fortunei, also known as the Chinese cedar, is an important timber species in southern China. The primary component of its woody tissues is lignin, mainly present in secondary cell walls. Therefore, continuous lignin synthesis is crucial for wood formation. In this study, we aimed to discover key genes involved in lignin synthesis expressed in the vascular cambium of C. fortunei. Through transcriptome sequencing, we detected expression of two genes, 4CL and CCoAOMT, known to be homologous to enzymes involved in the lignin synthesis pathway. We studied the function of these genes through bioinformatics analysis, cloning, vascular cambium expression analysis, and transgenic cross-species functional validation studies. Our results show that Cf4CL and CfCCoAOMT do indeed function in the pathway of lignin synthesis and likely perform this function in C. fortunei. They are prime candidates for future (gene-editing) studies aimed at optimizing C. fortunei wood production.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 156 ◽  
Author(s):  
Wan-Long Su ◽  
Na Liu ◽  
Li Mei ◽  
Jie Luo ◽  
Yi-Jie Zhu ◽  
...  

To uncover the transcriptomic mechanism of lignin accumulation caused by boron deficiency (BD), Nanlin895 (Populus × euramericana “Nanlin895”) was subjected to control (CK, 0.25 mg·L−1) and BD (0 mg·L−1) treatments for 3 days. RNA-Seq was carried out to survey the expression patterns of the lignin-regulated biosynthetic genes in response to BD. The results showed that 5946 genes were identified as differentially expressed genes (DEGs), 2968 (44.2%) of which were upregulated and 3318 (55.8%) of which were downregulated in response to BD. Among them, the expression of lignin monomer biosynthetic (PAL, CCR, CAD, COMT, F5H, PER/LAC) and modulated genes, for example, transcription factors (MYBs) and hormone signal regulating genes (GIDs, histidine kinase 1, coronatine-insensitive protein 1), were upregulated, and some hormone signal regulating genes, such as AUXs and BR-related (sterol methyltransferases), were downregulated under BD treatment. There are also some genes that were screened as candidates for an association with wood formation, which will be used for the further analysis of the function of lignin formation. These results provide an important theoretical basis and reference data in plant for further research on the mechanism of lignin accumulation under BD.


2020 ◽  
Vol 48 (15) ◽  
pp. 8408-8430 ◽  
Author(s):  
Hongfang Qiu ◽  
Emily Biernat ◽  
Chhabi K Govind ◽  
Yashpal Rawal ◽  
Răzvan V Chereji ◽  
...  

Abstract The chromatin remodelers SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the −1 and +1 nucleosomes flanking NDRs; however, Ino80C’s function in transcriptional activation in vivo is not well understood. Analyzing the cohort of Gcn4-induced genes in ino80Δ mutants has uncovered a role for Ino80C on par with SWI/SNF in evicting promoter nucleosomes and transcriptional activation. Compared to SWI/SNF, Ino80C generally functions over a wider region, spanning the −1 and +1 nucleosomes, NDR and proximal genic nucleosomes, at genes highly dependent on its function. Defects in nucleosome eviction in ino80Δ cells are frequently accompanied by reduced promoter occupancies of TBP, and diminished transcription; and Ino80 is enriched at genes requiring its remodeler activity. Importantly, nuclear depletion of Ino80 impairs promoter nucleosome eviction even in a mutant lacking H2A.Z. Thus, Ino80C acts widely in the yeast genome together with RSC and SWI/SNF in evicting promoter nucleosomes and enhancing transcription, all in a manner at least partly independent of H2A.Z editing.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yongil Yang ◽  
Chang Geun Yoo ◽  
William Rottmann ◽  
Kimberly A. Winkeler ◽  
Cassandra M. Collins ◽  
...  

Abstract Background Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. Results Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. Conclusions PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


2017 ◽  
Vol 114 (45) ◽  
pp. E9722-E9729 ◽  
Author(s):  
Ying-Chung Jimmy Lin ◽  
Hao Chen ◽  
Quanzi Li ◽  
Wei Li ◽  
Jack P. Wang ◽  
...  

Secondary cell wall (SCW) biosynthesis is the biological process that generates wood, an important renewable feedstock for materials and energy. NAC domain transcription factors, particularly Vascular-Related NAC-Domain (VND) and Secondary Wall-Associated NAC Domain (SND) proteins, are known to regulate SCW differentiation. The regulation of VND and SND is important to maintain homeostasis for plants to avoid abnormal growth and development. We previously identified a splice variant, PtrSND1-A2IR, derived from PtrSND1-A2 as a dominant-negative regulator, which suppresses the transactivation of all PtrSND1 family members. PtrSND1-A2IR also suppresses the self-activation of the PtrSND1 family members except for its cognate transcription factor, PtrSND1-A2, suggesting the existence of an unknown factor needed to regulate PtrSND1-A2. Here, a splice variant, PtrVND6-C1IR, derived from PtrVND6-C1 was discovered that suppresses the protein functions of all PtrVND6 family members. PtrVND6-C1IR also suppresses the expression of all PtrSND1 members, including PtrSND1-A2, demonstrating that PtrVND6-C1IR is the previously unidentified regulator of PtrSND1-A2. We also found that PtrVND6-C1IR cannot suppress the expression of its cognate transcription factor, PtrVND6-C1. PtrVND6-C1 is suppressed by PtrSND1-A2IR. Both PtrVND6-C1IR and PtrSND1-A2IR cannot suppress their cognate transcription factors but can suppress all members of the other family. The results indicate that the splice variants from the PtrVND6 and PtrSND1 family may exert reciprocal cross-regulation for complete transcriptional regulation of these two families in wood formation. This reciprocal cross-regulation between families suggests a general mechanism among NAC domain proteins and likely other transcription factors, where intron-retained splice variants provide an additional level of regulation.


2015 ◽  
Vol 64 (1-6) ◽  
pp. 148-159 ◽  
Author(s):  
K. Kanberga-Silina ◽  
A. Jansons ◽  
Dainis Rungis

Abstract Wood volume and quality are the most important aspects of commercial forestry production, and studies of wood formation are important in order to increase the value and efficiency of forestry production. The phenylpropanoid pathway produces various compounds with diverse functions both for plant defence against biotic and abiotic stress as well as structural development. One of the main roles is monolignol production for lignin biosynthesis, which is a crucial aspect of wood formation. For this study three candidate genes involved in lignin biosynthesis were selected: phenylalanine ammonialyase (PAL1), cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR). Candidate gene expression was analysed in selected individuals with high and low wood density from open-pollinated Scots pine families during early wood (EW) and late wood (LW) formation and correlation between expression of these genes, total lignin content, and wood density was determined. Wood density values for analysed trees were similar within tree families but differed significantly between families with high and low wood density (p=1,06E-20). Wood density was slightly negatively correlated with lignin content (r=-0.36, p=0.038), but only in individuals in the high density wood group. In trees with low wood density, expression of the CAD gene was significantly lower in late wood formation compared to early wood (p=0.00179). In trees with high wood density, expression of the PAL1 gene was five times higher during early wood formation compared to late wood formation. A positive correlation was detected between PAL1 and CCR gene expression during early wood formation (r=0.804) and late wood formation (r=0.466).


Sign in / Sign up

Export Citation Format

Share Document