scholarly journals Reactive Oxygen Species coordinate the transcriptional responses to iron availability in Arabidopsis

Author(s):  
Claudia von der Mark ◽  
Rumen Ivanov ◽  
Monique Eutebach ◽  
Veronica G Maurino ◽  
Petra Bauer ◽  
...  

Abstract Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT in this process. We identified CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcriptional cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLHs of group Ib and POPEYE (PYE), however H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 509
Author(s):  
Pingping Fang ◽  
Yu Wang ◽  
Mengqi Wang ◽  
Feng Wang ◽  
Cheng Chi ◽  
...  

Brassinosteroids (BRs) play a critical role in plant responses to stress. However, the interplay of BRs and reactive oxygen species signaling in cold stress responses remains unclear. Here, we demonstrate that a partial loss of function in the BR biosynthesis gene DWARF resulted in lower whilst overexpression of DWARF led to increased levels of C-REPEAT BINDING FACTOR (CBF) transcripts. Exposure to cold stress increased BR synthesis and led to an accumulation of brassinazole-resistant 1 (BZR1), a central component of BR signaling. Mutation of BZR1 compromised the cold- and BR-dependent increases in CBFs and RESPIRATORY BURST OXIDASE HOMOLOG 1(RBOH1) transcripts, as well as preventing hydrogen peroxide (H2O2) accumulation in the apoplast. Cold- and BR-induced BZR1 bound to the promoters of CBF1, CBF3 and RBOH1 and promoted their expression. Significantly, suppression of RBOH1 expression compromised cold- and BR-induced accumulation of BZR1 and related increases in CBF transcripts. Moreover, RBOH1-dependent H2O2 production regulated BZR1 accumulation and the levels of CBF transcripts by influencing glutathione homeostasis. Taken together, these results demonstrate that crosstalk between BZR1 and reactive oxygen species mediates cold- and BR-activated CBF expression, leading to cold tolerance in tomato (Solanum lycopersicum).


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengcheng Kan ◽  
Yi Zhang ◽  
Hou-Ling Wang ◽  
Yingbai Shen ◽  
Xinli Xia ◽  
...  

Leaf senescence is a highly complex genetic process that is finely tuned by multiple layers of regulation. Among them, transcriptional regulation plays a critical role in controlling the initiation and progression of leaf senescence. Here, we found that the NAC transcription factor NAC075 functions as a novel negative regulator of leaf senescence. Loss of function of NAC075 promotes leaf senescence in an age-dependent manner, whereas constitutive overexpression of NAC075 delays senescence in Arabidopsis. Transcriptome analysis revealed that transcript levels of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) are significantly suppressed in nac075 mutants compared with wild-type plants. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analyses revealed that NAC075 directly binds the promoter of catalase 2 (CAT2). Moreover, genetic analysis showed that overexpression of CAT2 suppresses the overproduction of reactive oxygen species (ROS) and the early senescence phenotypes of nac075 mutants, suggesting that CAT2 acts downstream of NAC075 to delay leaf senescence by repressing ROS accumulation. Collectively, our findings provide a new regulatory module involving NAC075-CAT2-ROS in controlling leaf senescence in Arabidopsis.


Author(s):  
Samuel A McInturf ◽  
Mather A Khan ◽  
Arun Gokul ◽  
Norma A Castro-Guerrero ◽  
Ricarda Hoehner ◽  
...  

Abstract Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe-deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd and Fe-associated responses in wildtype Arabidopsis and in a mutant that over-accumulates iron (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in wildtype but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2 we propose a model where reactive oxygen species prevent the induction of genes that are induced in wildtype by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely the result of an impaired Fe sensing. Overall, our data suggest that Fe-deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


Peptides ◽  
2019 ◽  
Vol 120 ◽  
pp. 170017
Author(s):  
Terry W. Moody ◽  
Lingaku Lee ◽  
Tatiana Iordanskaia ◽  
Irene Ramos-Alvarez ◽  
Paola Moreno ◽  
...  

Author(s):  
Li Hu ◽  
Li-Li Li ◽  
Zhi-Guo Lin ◽  
Zhi-Chao Jiang ◽  
Hong-Xing Li ◽  
...  

The potassium (K+) channel plays an important role in the cell cycle and proliferation of tumor cells, while its role in brain glioma cells and the signaling pathways remains unclear. We used tetraethylammonium (TEA), a nonselective antagonist of big conductance K+ channels, to block K+ channels in glioma cells, and antioxidant N-acetyl-l-cysteine (NAC) to inhibit production of intracellular reactive oxygen species (ROS). TEA showed an antiproliferation effect on C6 and U87 glioma cells in a time-dependent manner, which was accompanied by an increased intracellular ROS level. Antioxidant NAC pretreatment reversed TEA-mediated antiproliferation and restored ROS level. TEA treatment also caused significant increases in mRNA and protein levels of tumor-suppressor proteins p53 and p21, and the upregulation was attenuated by pretreatment of NAC. Our results suggest that K+ channel activity significantly contributes to brain glioma cell proliferation via increasing ROS, and it might be an upstream factor triggering the activation of the p53/p21Cip1-dependent signaling pathway, consequently leading to glioma cell cycle arrest.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3372 ◽  
Author(s):  
Yan-Hui Shen ◽  
Li-Ying Wang ◽  
Bao-Bao Zhang ◽  
Qi-Ming Hu ◽  
Pu Wang ◽  
...  

Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V–FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.


2021 ◽  
Author(s):  
Suzuko Kinoshita ◽  
Kazuki Takarada ◽  
Yoshihiro H. Inoue

Mechanisms of cancer cell recognition and elimination by the innate immune system remains unclear. Circulating hemocytes are associated with the hematopoietic tumors in Drosophila mxcmbn1 mutant larvae. The innate immune signalling pathways are activated in the fat body to suppress the tumor growth by inducing antimicrobial peptides (AMP). Here, we investigated the regulatory mechanism underlying the activation in the mutant. Reactive oxygen species accumulated in the hemocytes due to induction of dual oxidase and its activator. The hemocytes were also localized on the fat body. These were essential for transmitting the information on tumors toward the fat body to induce AMP expression. Regarding to the tumor recognition, we found that matrix metalloproteinase 1 (MMP1) and MMP2 were highly expressed in the tumors. Ectopic expression of MMP2 was associated with AMP induction in the mutants. Furthermore, the basement membrane components in the tumors were reduced and ultimately lost. The hemocytes may recognize the disassembly in the tumors. Our findings highlight the underlying mechanism via which macrophage-like hemocytes recognize tumor cells and relay the information toward the fat body to induce AMPs. and contribute to uncover the immune system's roles against cancer.


2021 ◽  
Author(s):  
Xiumei Luo ◽  
Tingting Tian ◽  
Maxime Bonnave ◽  
Xue Tan ◽  
Xiaoqing Huang ◽  
...  

Reactive oxygen species (ROS) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROS are toxic. Little is known regarding the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelial growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine (MDC) staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of PiTOR (TOR in P. infestans) displayed high resistance to P. infestans. Taken together, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, as host-mediated silencing of PiTOR enhances potato resistance to late blight.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 139 ◽  
Author(s):  
Yoon-Hee Choi ◽  
Ok-Hwan Lee ◽  
Yulong Zheng ◽  
Il-Jun Kang

Obesity is one of the major public health problems in the world because it is implicated in metabolic syndromes, such as type 2 diabetes, hypertension, and cardiovascular diseases. The objective of this study was to investigate whether Erigeron annuus (L.) Pers. (EAP) extract suppresses reactive oxygen species (ROS) production and fat accumulation in 3T3-L1 cells by activating an AMP-dependent kinase (AMPK) signaling pathway. Our results showed that EAP water extract significantly inhibits ROS production, adipogenesis, and lipogenesis during differentiation of 3T3-L1 preadipocytes. In addition, EAP decreased mRNA and protein levels of proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). Moreover, EAP suppressed mRNA expressions of fatty acid synthase (FAS), lipoprotein lipase (LPL), adipocyte protein 2 (aP2) in a dose-dependent manner. Whereas, EAP upregulated adiponectin expression, phosphorylation levels of AMPK and carnitine palmitoyltransferase 1 (CPT-1) protein level during differentiation of 3T3-L1 preadipocytes. These results suggest that EAP water extract can exert ROS-linked anti-obesity effect through the mechanism that might involve inhibition of ROS production, adipogenesis and lipogenesis via an activating AMPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document