Depression as a Neuroinflammatory Condition

2018 ◽  
pp. 197-210
Author(s):  
Alessandra Borsini ◽  
Patricia A. Zunszain

Depressive disorder is a multifactorial and complex disease, the etiology of which is not well understood. However, the role of dysregulation of the immune system in the pathogenesis of the disease has been established. Emerging research suggests the regulation of neurogenesis as a biological mechanism involved in the relationship between immune activation and depression. Neurogenesis is a complex process through which new neurons are generated from neural stem cells in distinct areas in the brain, including the hippocampus, a region well known for its role in synaptic plasticity and memory formation. Inflammatory molecules, known as cytokines, are recognized to modulate distinct neurogenic pathways, which might be one of the mechanisms activated by the immune system and potentially involved in the development of psychiatric disorders such as depression.

2019 ◽  
Vol 14 (02) ◽  
pp. 101-114 ◽  
Author(s):  
Vladimir P. Zhdanov

The understanding of the interplay between cancer and the immune system is still limited. Herein, I focus on two aspects of this interplay. First, I propose a kinetic model describing the likely role of the immune system in the lifetime risk of cancer at the level of the whole human population. For each tissue, the risk is predicted to be influenced by the heterogeneity of the population and to depend exponentially on time. The expression for the risk does not, however, depend explicitly on the total number of divisions of the corresponding stem cells. For this reason, the correlation with the latter number can only be indirect. Second, using another kinetic framework, I describe how the growth of a few tumors can depend on their interaction via the immune system. The analysis shows that depending on specific details, the tumors of different sizes tend either to reach the same size or remain to be of different sizes.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 767
Author(s):  
Courtney Davis ◽  
Sean I. Savitz ◽  
Nikunj Satani

Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Felipe de Almeida Sassi ◽  
Algemir Lunardi Brunetto ◽  
Gilberto Schwartsmann ◽  
Rafael Roesler ◽  
Ana Lucia Abujamra

Gliomas are the most incident brain tumor in adults. This malignancy has very low survival rates, even when combining radio- and chemotherapy. Among the gliomas, glioblastoma multiforme (GBM) is the most common and aggressive type, and patients frequently relapse or become refractory to conventional therapies. The fact that such an aggressive tumor can arise in such a carefully orchestrated organ, where cellular proliferation is barely needed to maintain its function, is a question that has intrigued scientists until very recently, when the discovery of the existence of proliferative cells in the brain overcame such challenges. Even so, the precise origin of gliomas still remains elusive. Thanks to new advents in molecular biology, researchers have been able to depict the first steps of glioma formation and to accumulate knowledge about how neural stem cells and its progenitors become gliomas. Indeed, GBM are composed of a very heterogeneous population of cells, which exhibit a plethora of tumorigenic properties, supporting the presence of cancer stem cells (CSCs) in these tumors. This paper provides a comprehensive analysis of how gliomas initiate and progress, taking into account the role of epigenetic modulation in the crosstalk of cancer cells with their environment.


2010 ◽  
Vol 80 ◽  
pp. S33-S34
Author(s):  
J. Jeon ◽  
S. Cho ◽  
K. Cho ◽  
Y. Lee ◽  
M. Lee

2020 ◽  
Vol 11 (3) ◽  
pp. 3807-3812
Author(s):  
Aziez Chettoum ◽  
Kamilia Guedri ◽  
Zouhir Djerrou ◽  
Rachid Mosbah ◽  
Latifa Khattabi ◽  
...  

Psychoneuroimmunology or the study of the relationships between the brain and the immune system is an area of research that has experienced significant development over the decade. Stress does not appear without consequences on the state of health, the role of fears, emotions and significant constraints in the appearance of organic and mental diseases. In this research, we studied the effect of stress and anxiety during exams at the end of the academic year (2018/2019) on the distribution of leukocyte subpopulations and the immune system, questionnaires has been completed by student volunteers, to estimate the anxio-depressive comorbidities through the (HADS) test during and outside exams, and in the same time we asked them for a blood sample the next morning day to carry out some biological assays (CBC). We also found that stress during exams caused a change in the distribution of different types of white blood cells, a total decrease in white blood cell counts with neutropenia and lymphopenia were found in students during exams compared to controls, and an increase in monocyte and other types of polymorphonuclear levels in students during exams compared to controls. Other tests measuring the effects of stress on specific functions of the immune system can be used.


2018 ◽  
Vol 2 (1) ◽  

The research on nitric Oxide (NO) and stem cells are the focus in recent years. However, seldom do people conclude the function, mechanism and clinical value of NO in various stem cells including embryonic stem cells (ESCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs). In the present review, we evaluate the recent studies on NO in different stem cells and display the latest progresses of NO therapy for tumor, cardiovascular, neurologic and immune system diseases by stem cells.


2021 ◽  
Author(s):  
Wafa Abdelghaffar ◽  
Oussama Sidhom ◽  
Lilia Laadhar ◽  
Rym Rafrafi

The involvement of immunity in the pathogenesis of schizophrenia and related psychoses was suspected a century ago but was shadowed by the dopaminergic hypothesis after the discovery of antipsychotics. We currently know that this latter theory has many limits and cannot account for the wide variety of psychotic conditions. The immune-inflammatory theory is now one of the most promising axes of research in terms of pathogenesis of several mental health conditions. Immunity and inflammation play a role at least in a subgroup of patients with psychosis. The immune system is complex with a variety of components and mediators that can all have effects on the brain and thus mediate psychiatric symptoms. In this chapter we will explore the scientific evidence of the role of immune system in pathophysiology of psychosis. The sections of this chapter will discuss the role of innate system components (cytokines, microglia, inflammation.), the role of adaptive system (lymphocytes and antibodies) with a section focusing on auto-immunity and particularly antineuronal antibodies. Finally we will discuss how this research can impact patients management and elaborate recommendations for future research.


2021 ◽  
Vol 28 ◽  
Author(s):  
Amir Hossein Kheirkhah ◽  
Seyed Hossein Shahcheraghi ◽  
Malihe lotfi ◽  
Marzieh lotfi ◽  
Sanaz Raeisi ◽  
...  

: Given that conventional therapies are ineffective for COVID-19, obtained exosomes from stem cells have been proposed as a sustainable and effective treatment. Exosomes are subsets with lengths between 30 and 100 nanometers, and they can be secreted by different cells. Exosomes are containing different types of miRNAs, mRNAs, and different proteins. The role of immune system modulation of exosomes of mesenchymal stem cells has been studied and confirmed in more than one study. Exosome miRNAs detect and reduce cytokines that cause cytokine storms such as IL-7, IL-2, IL-6, etc. These miRNAs include miR-21, miR-24, miR-124, miR-145, etc. The risks associated with treatment with exosomes from different cells are relatively small compared to other treatments because transplanted cells do not stimulate the host immune system and also has reduced infection transmission. Due to the ineffectiveness of existing drugs in reducing inflammation and preventing cytokine storms, the use of immune-boosting systems may be suggested as another way to control cytokine storm.


Sign in / Sign up

Export Citation Format

Share Document