Introduction

Author(s):  
Helen V. Firth ◽  
Jane A. Hurst

This chapter introduces a number of important genetic concepts. It discusses patterns of inheritance, the approach to the consultation with a child with dysmorphism, congenital malformation, or developmental delay, communication skills, confidentiality, how to provide precise and accurate genetic diagnosis, and some of the important aspects of genetic testing. It concludes with a list of useful resources.

Author(s):  
Helen V. Firth ◽  
Jane A. Hurst ◽  
Judith G. Hall

Adoption 2Approach to the consultation with a child with dysmorphism, congenital malformation, or developmental delay 4Autosomal dominant (AD) inheritance 6Autosomal recessive (AR) inheritance 8Communication skills 10Confidentiality 12Confirmation of diagnosis 14Consent for genetic testing 16The genetic code and mutations ...


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 185 ◽  
Author(s):  
Malavika Hebbar ◽  
Heather C. Mefford

Developmental and epileptic encephalopathies (DEEs) are a group of severe, early onset epilepsies characterized by refractory seizures, developmental delay or regression associated with ongoing epileptic activity, and generally poor prognosis. DEE is genetically and phenotypically heterogeneous, and there is a plethora of genetic testing options to investigate the rapidly growing list of epilepsy genes. However, more than 50% of patients with DEE remain without a genetic diagnosis despite state-of-the-art genetic testing. In this review, we discuss the major advances in epilepsy genomics that have surfaced in recent years. The goal of this review is to reach a larger audience and build a better understanding of pathogenesis and genetic testing options in DEE.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 370
Author(s):  
Joohyun Hong ◽  
Jiyun Lee ◽  
Minsuk Kwon ◽  
Ji-Yeon Kim ◽  
Jong-Won Kim ◽  
...  

Genetic diagnosis for human epidermal growth factor receptor 2-negative metastatic breast cancer patients with the germline BRCA (gBRCA) mutation has been emphasized since the development of polyadenosine diphosphate-ribose polymerase inhibitors. Myriad Genetics, Inc.’s (Salt Lake City, UT, USA) companion diagnostics service is almost exclusively used for genetic testing. The aim of this study was to compare the results of germline BRCA mutation tests returned by a local laboratory and those performed by Myriad. Between April 2014 and February 2018, 31 patients with gBRCA 1/2 mutation test results from both Samsung Medical Center (Seoul, Korea) and Myriad were enrolled. “Discordant: Opposite classification” was observed for only one among 27 (3.7%). This discrepancy was due to the detection of a deleterious large genomic rearrangement of BRCA 1 by Myriad. Samsung Medical Center performed multiple ligation-dependent probe amplifications (MLPA) to detect large genomic rearrangements only in high-risk patients. This one case was not suspected as high risk and MLPA was not performed. The concordant rate was 74.1% for all 27 patients. “Discordant: Laboratory’s uncertain classification” was found in 22.2% of the sample (six patients). All discrepancies were generated during interpretation of BRCA 2 gene sequencing. Further studies and standardization of genetic testing for BRCA 1/2 genes are required.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gilyazetdinov Kamil ◽  
Ju Young Yoon ◽  
Sukdong Yoo ◽  
Chong Kun Cheon

Abstract Background Large-scale genomic analyses have provided insight into the genetic complexity of short stature (SS); however, only a portion of genetic causes have been identified. In this study, we identified disease-causing mutations in a cohort of Korean patients with suspected syndromic SS by targeted exome sequencing (TES). Methods Thirty-four patients in South Korea with suspected syndromic disorders based on abnormal growth and dysmorphic facial features, developmental delay, or accompanying anomalies were enrolled in 2018–2020 and evaluated by TES. Results For 17 of 34 patients with suspected syndromic SS, a genetic diagnosis was obtained by TES. The mean SDS values for height, IGF-1, and IGFBP-3 for these 17 patients were − 3.27 ± 1.25, − 0.42 ± 1.15, and 0.36 ± 1.31, respectively. Most patients displayed distinct facial features (16/17) and developmental delay or intellectual disability (12/17). In 17 patients, 19 genetic variants were identified, including 13 novel heterozygous variants, associated with 15 different genetic diseases, including many inherited rare skeletal disorders and connective tissue diseases (e.g., cleidocranial dysplasia, Hajdu–Cheney syndrome, Sheldon–Hall, acromesomelic dysplasia Maroteaux type, and microcephalic osteodysplastic primordial dwarfism type II). After re-classification by clinical reassessment, including family member testing and segregation studies, 42.1% of variants were pathogenic, 42.1% were likely pathogenic variant, and 15.7% were variants of uncertain significance. Ultra-rare diseases accounted for 12 out of 15 genetic diseases (80%). Conclusions A high positive result from genetic testing suggests that TES may be an effective diagnostic approach for patients with syndromic SS, with implications for genetic counseling. These results expand the mutation spectrum for rare genetic diseases related to SS in Korea.


2021 ◽  
Author(s):  
Christina E. Hoei-Hansen ◽  
Marie L. B. Tygesen ◽  
Morten Dunø ◽  
John Vissing ◽  
Martin Ballegaard ◽  
...  

Abstract Aim The diagnostic workup in patients with delayed motor milestones suspected of having either myopathy or a congenital myasthenic syndrome is complex. Our hypothesis was that performance of a muscle biopsy and neurophysiology including stimulated single-fiber electromyography during an anesthetic procedure, combined with genetic testing has a high diagnostic quality. Materials and Methods Clinical and paraclinical data were retrospectively collected from 24 patients aged from 1 month to 10 years (median: 5.2 years). Results Neurophysiology examination was performed in all patients and was abnormal in 11 of 24. No patients had findings suggestive of a myasthenic syndrome. Muscle biopsy was performed in 21 of 24 and was normal in 16. Diagnostic findings included nemaline rods, inclusion bodies, fiber size variability, and type-II fiber atrophy. Genetic testing with either a gene panel or exome sequencing was performed in 18 of 24 patients, with pathogenic variants detected in ACTA1, NEB, SELENON, GRIN2B, SCN8A, and COMP genes. Conclusion Results supporting a neuromuscular abnormality were found in 15 of 24. In six patients (25%), we confirmed a genetic diagnosis and 12 had a clinical neuromuscular diagnosis. The study suggests that combined use of neurophysiology and muscle biopsy in cases where genetic testing does not provide a diagnosis can be useful in children with delayed motor milestones and clinical evidence of a neuromuscular disease.


Author(s):  
Alexandra Cernat ◽  
Robin Z. Hayeems ◽  
Wendy J. Ungar

AbstractCascade genetic testing is the identification of individuals at risk for a hereditary condition by genetic testing in relatives of people known to possess particular genetic variants. Cascade testing has health system implications, however cascade costs and health effects are not considered in health technology assessments (HTAs) that focus on costs and health consequences in individual patients. Cascade health service use must be better understood to be incorporated in HTA of emerging genetic tests for children. The purpose of this review was to characterise published research related to patterns and costs of cascade health service use by relatives of children with any condition diagnosed through genetic testing. To this end, a scoping literature review was conducted. Citation databases were searched for English-language papers reporting uptake, costs, downstream health service use, or cost-effectiveness of cascade investigations of relatives of children who receive a genetic diagnosis. Included publications were critically appraised, and findings were synthesised. Twenty publications were included. Sixteen had a paediatric proband population; four had a combined paediatric and adult proband population. Uptake of cascade testing varied across diseases, from 37% for cystic fibrosis, 39% to 65% for hypertrophic cardiomyopathy, and 90% for rare monogenic conditions. Two studies evaluated costs. It was concluded that cascade testing in the child-to-parent direction has been reported in a variety of diseases, and that understanding the scope of cascade testing will aid in the design and conduct of HTA of emerging genetic technologies to better inform funding and policy decisions.


2020 ◽  
Vol 22 (12) ◽  
Author(s):  
Lisa D. Wilsbacher

Abstract Purpose of Review Dilated cardiomyopathy (DCM) frequently involves an underlying genetic etiology, but the clinical approach for genetic diagnosis and application of results in clinical practice can be complex. Recent Findings International sequence databases described the landscape of genetic variability across populations, which informed guidelines for the interpretation of DCM gene variants. New evidence indicates that loss-of-function mutations in filamin C (FLNC) contribute to DCM and portend high risk of ventricular arrhythmia. Summary A clinical framework aids in referring patients for DCM genetic testing and applying results to patient care. Results of genetic testing can change medical management, particularly in a subset of genes that increase risk for life-threatening ventricular arrhythmias, and can influence decisions for defibrillator therapy. Clinical screening and cascade genetic testing of family members should be diligently pursued to identify those at risk of developing DCM.


2019 ◽  
Vol 22 (2) ◽  
pp. 193-200 ◽  
Author(s):  
S. González-Santiago ◽  
◽  
T. Ramón y Cajal ◽  
E. Aguirre ◽  
J. E. Alés-Martínez ◽  
...  

AbstractMutations in BRCA1 and BRCA2 high penetrance genes account for most hereditary breast and ovarian cancer, although other new high-moderate penetrance genes included in multigene panels have increased the genetic diagnosis of hereditary breast and ovarian cancer families by 50%. Multigene cancer panels provide new challenges related to increased frequency of variants of uncertain significance, new gene-specific cancer risk assessments, and clinical recommendations for carriers of mutations of new genes. Although clinical criteria for genetic testing continue to be largely based on personal and family history with around a 10% detection rate, broader criteria are being applied with a lower threshold for detecting mutations when there are therapeutic implications for patients with breast or ovarian cancer. In this regard, new models of genetic counselling and testing are being implemented following the registration of PARP inhibitors for individuals who display BRCA mutations. Massive sequencing techniques in tumor tissue is also driving a paradigm shift in genetic testing and potential identification of germline mutations. In this paper, we review the current clinical criteria for genetic testing, as well as surveillance recommendations in healthy carriers, risk reduction surgical options, and new treatment strategies in breast cancer gene-mutated carriers.


2019 ◽  
Vol 19 (1) ◽  
pp. 161-163 ◽  
Author(s):  
Gillian Rea ◽  
Sandya Tirupathi ◽  
Jonathan Williams ◽  
Penny Clouston ◽  
Patrick J. Morrison

Abstract Spinocerebellar ataxia type 5 (SCA-5) is a predominantly slowly progressive adult onset ataxia. We describe a child with a presentation of ataxic cerebral palsy (CP) and developmental delay at 6 months of age. Genetic testing confirmed a c.812C>T p.(Thr271Ile) mutation within the SPTBN2 gene. Seven previous cases of infantile onset SCA-5 are reported in the literature, four of which had a CP presentation. Early onset of SCA-5 presents with ataxic CP and is a rare cause of cerebral palsy.


Sign in / Sign up

Export Citation Format

Share Document