scholarly journals Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics

2019 ◽  
Vol 57 (Supplement_3) ◽  
pp. S307-S317 ◽  
Author(s):  
Christopher P Eades ◽  
Darius P H Armstrong-James

AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.

Author(s):  
ANTA SHARMA ◽  
SONIKA TANWAR ◽  
RAJESH ASIJA ◽  
RICHA AGARWAL

To study fungal infections such as Mucormycosis, Aspergillosis, Candidiasis, Cryptococcosis associated with Covid-19. A detailed study was done with the information gathered from the articles in specified databases, online sources, and online published materials to have current details of the situation of fungal infections in covid patients. Fungal infections were seen among covid-19 patients mostly due to opportunistic fungal pathogens such as Mucor, Candida, Aspergillus, and Cryptococcus. The reason behind rising opportunistic fungal infections among covid-19 patients may be the immunocompromised host. The most common species responsible for fungal infections in covid-19 were noticed to be of genus Mucor, A. flavus, and A. fumigatus species of genus Aspergillus, C. albicans species of genus Candida, C. neoformans, and C. gattii species of genus Cryptococcus. Patients suffering or recovered from covid-19 are now facing numerous Secondary Infections. The majority of secondary infections associated with covid-19 are Fungal Infections. Mucormycosis, candidiasis, aspergillosis, cryptococcosis as opportunistic infections are seen widely in the covid-19 treated patients. Rapid progression of such fungal infections is required to be controlled by early diagnosis of infection and by identifying the underlying risk parameters. Protocols for disease management will be beneficial too.


2006 ◽  
Vol 19 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Melody L. Duffalo

Fungal pathogens can lead to many of the complications seen in advanced HIV disease and are commonly identified in HIV-infected populations with decreased immune function. Common fungal organisms affecting individuals with AIDS include Cryptococcus neoformans, various Candida species, and Histoplasma capsulatum. While infection with these organisms can be fatal, appropriate identification and management of the condition can result in reduced mortality and the opportunity for effectivemanagement of HIV disease with highly active antiretroviral therapy. This article describes the clinical presentation and treatment of 3 fungal infections common in the immunocompromised individual with AIDS. Current antifungal therapy for themanagement of these infections is discussed. In addition, the role of newer antifungal agents in the setting of these conditions is reviewed.


2021 ◽  
Vol 10 (Supplement_2) ◽  
pp. S2-S3
Author(s):  
Matthew Smollin ◽  
Nick Degner ◽  
Ozlem Equils ◽  
Aparna Arun ◽  
Christiaan DeVries ◽  
...  

Abstract Background A diverse spectrum of invasive molds and fungi cause serious opportunistic infections in immunocompromised (IC) children. Their overlap in clinical presentation can make it challenging to differentiate among etiologies and optimally tailor antifungal therapy. Current methods to identify these pathogens lack sensitivity, are limited by long turnaround times and require an array of individual tests on invasively obtained specimens. The delay or lack of a pathogen diagnosis in combination with the reliance on invasive procedures leads to a dependence on broad empiric therapy, the development of antimicrobial resistance and increases in morbidity and mortality. Rapid, non-invasive diagnosis of invasive fungal infections through next-generation sequencing (NGS) of plasma microbial cell-free DNA (mcfDNA) offers a means to overcome these limitations. Methods Karius® Test (KT) results were reviewed for detections of Aspergillus, non-Aspergillus molds and Pneumocystis jirovecii (PJP) in children. KT, developed and validated in Karius’ CLIA certified/CAP accredited lab, detects microbial cell-free DNA (mcfDNA) can assist with the diagnosis of invasive infections. McfDNA is extracted, NGS is performed, human sequences removed and remaining sequences aligned to a curated pathogen database of >1400 organisms. Organisms present above a statistical threshold are reported and quantified. For > 85% of tests the time to result reporting is 24 hours from sample receipt. Clinical information was included from data submitted with the requisition or obtained at the time of reporting from clinical consultations with the provider. Results KT detected 7 different species of Aspergillus in 61 patients (74% IC, 40% with a pulmonary focus). KT detected 15 different non-Aspergillus molds in 51 patients (80% IC, 36% with a pulmonary focus). KT detected PJP in 37 patients (73% IC, 76% with a pulmonary focus, 54% with a DNA virus co-detection and 32% with a herpesvirus co-detections). There were 31 subjects with serial monitoring (97% IC, 70% with a pulmonary focus) including 48% with Aspergillus, 39% with non-Aspergillus molds and 12% with PJP (Figure 1). 71% of subjects demonstrated a decline in the quantitative mcfDNA signal over time; the duration of a positive mcfDNA signal ranged from 3–92 days (median 16 days, SD 22.4). Conclusions Plasma mcfDNA NGS offers a rapid, non-invasive means of detecting a broad diversity of invasive pathogens that overlap in their clinical presentations and are difficult to identify in immunocompromised children. The rapid turnaround time, non-invasive sampling and 1-sample-1000+test-solution may lead to a faster time to pathogen diagnosis, faster time to targeted therapy and obviate the need for invasive diagnostic procedures. The ability with a single test to concomitantly diagnose co-pathogens including reactivating herpesviruses that modulate the progression of principal infecting fungal pathogens (i.e. cytomegalovirus modulation of PJP) can help optimize care. Additionally, this convenient non-invasive means of serial testing of invasive fungal infections may serve as an indicator of burden of infection, provide insight into treatment efficacy and ultimately help define the length and mode (medical/surgical) of therapy required to improve outcomes. Additional studies correlating the mcfDNA signal with individual patient clinical and radiographic parameters will be important to further define the utility of serial mcfDNA monitoring.


2022 ◽  
Vol 9 ◽  
pp. 204993612110663
Author(s):  
Daniel B. Chastain ◽  
Andrés F. Henao-Martínez ◽  
Austin C. Dykes ◽  
Gregory M. Steele ◽  
Laura Leigh Stoudenmire ◽  
...  

SARS-CoV-2 may activate both innate and adaptive immune responses ultimately leading to a dysregulated immune response prompting the use of immunomodulatory therapy. Although viral pneumonia increases the risk of invasive fungal infections, it remains unclear whether SARS-CoV-2 infection, immunomodulatory therapy, or a combination of both are responsible for the increased recognition of opportunistic infections in COVID-19 patients. Cases of cryptococcosis have previously been reported following treatment with corticosteroids, interleukin (IL)-6 inhibitors, and Janus kinase (JAK) inhibitors, for patients with autoimmune diseases, but their effect on the immunologic response in patients with COVID-19 remains unknown. Herein, we present the case of a patient with COVID-19 who received high-dose corticosteroids and was later found to have cryptococcosis despite no traditional risk factors. As our case and previous cases of cryptococcosis in patients with COVID-19 demonstrate, clinicians must be suspicious of cryptococcosis in COVID-19 patients who clinically deteriorate following treatment with immunomodulatory therapies.


2020 ◽  
Vol 18 ◽  
Author(s):  
Niranjan Kaushik ◽  
Nitin Kumar ◽  
Anoop Kumar ◽  
Vikas Sharma

Background: Fungal infections are opportunistic infections that become a serious problem to human health. Objective: Considering the antifungal potential of triazole nucleus, the study was carried out with the objective to synthesize some novel triazole derivatives with antifungal potential. Method: 1,2,4-triazole derivatives were synthesized via a two step reaction (reported earlier). The first step involves reaction of substituted benzoic acid with thiocarbohydrazide to form 4-amino-3-(substituted phenyl)-5-mercapto-1, 2, 4-triazole derivatives (1a-1k) while in second step, synthesized compounds (1a-1k) were then subsequently treated with substituted acetophenone to yield substituted (4-methoxyphenyl-7H-[1, 2, 4] triazolo [3, 4-b][1,3,4] thiadiazine derivatives (2a-2k). All synthesized compounds were characterized by IR, 1H NMR, and Mass spectral data analysis and were screened for their antifungal properties against different fungal strains i.e. Candida tropicalis (ATCC-13803, ATCC-20913), Candida albicans (ATCC-60193), Candida inconspicua (ATCC-16783) and Candida glabrata (ATCC-90030, ATCC-2001). Results: Compound 2d displayed better percentage inhibition (26.29%, 24.81%) than fluconazole (24.44%, 22.96%) against ATCC-16783, ATCC-2001 fungal strains respectively at 100µg/ml. Compound 2f also displayed better percentage inhibition (28.51%) against ATCC-90030 as compared to fluconazone (27.4%) at 200 µg/ml. Similarly, compounds 2e and 2j also exhibited better antifungal properties than fluconazole at 200µg/ml. Compound 2e was found most potent against ATCC13803 (30.37%) and ATCC-90030 (30.37%) fungal strains as compared to fluconazole (28.14%, 27.4%) at 200 µg/ml respectively whereas compound 2j exhibited better antifungal activity (28.51%) against ATCC-60193 than fluconazole (27.7%) at 200 µg/ml. Conclusion: The results were in accordance with our assertions for triazole derivatives, as all compounds displayed moderate to good antifungal activity.


2021 ◽  
Vol 7 (6) ◽  
pp. 451
Author(s):  
Georgios Karavalakis ◽  
Evangelia Yannaki ◽  
Anastasia Papadopoulou

Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.


2021 ◽  
Vol 8 ◽  
pp. 204993612198954
Author(s):  
Isabel Ruiz-Camps ◽  
Juan Aguilar-Company

Higher risks of infection are associated with some targeted drugs used to treat solid organ and hematological malignancies, and an individual patient’s risk of infection is strongly influenced by underlying diseases and concomitant or prior treatments. This review focuses on risk levels and specific suggestions for management, analyzing groups of agents associated with a significant effect on the risk of infection. Due to limited clinical experience and ongoing advances in these therapies, recommendations may be revised in the near future. Bruton tyrosine kinase (BTK) inhibitors are associated with a higher rate of infections, including invasive fungal infection, especially in the first months of treatment and in patients with advanced, pretreated disease. Phosphatidylinositol 3-kinase (PI3K) inhibitors are associated with an increased risk of Pneumocystis pneumonia and cytomegalovirus (CMV) reactivation. Venetoclax is associated with cytopenias, respiratory infections, and fever and neutropenia. Janus kinase (JAK) inhibitors may predispose patients to opportunistic and fungal infections; need for prophylaxis should be assessed on an individual basis. Mammalian target of rapamycin (mTOR) inhibitors have been linked to a higher risk of general and opportunistic infections. Breakpoint cluster region-Abelson (BCR-ABL) inhibitors are associated with neutropenia, especially over the first months of treatment. Anti-CD20 agents may cause defects in the adaptative immune response, hypogammaglobulinemia, neutropenia, and hepatitis B reactivation. Alemtuzumab is associated with profound and long-lasting immunosuppression; screening is recommended for latent infections and prevention strategies against CMV, herpesvirus, and Pneumocystis infections. Checkpoint inhibitors (CIs) may cause immune-related adverse events for which prolonged treatment with corticosteroids is needed: prophylaxis against Pneumocystis is recommended.


2021 ◽  
Vol 7 (2) ◽  
pp. 124
Author(s):  
Charmaine Retanal ◽  
Brianna Ball ◽  
Jennifer Geddes-McAlister

Post-translational modifications (PTMs) change the structure and function of proteins and regulate a diverse array of biological processes. Fungal pathogens rely on PTMs to modulate protein production and activity during infection, manipulate the host response, and ultimately, promote fungal survival. Given the high mortality rates of fungal infections on a global scale, along with the emergence of antifungal-resistant species, identifying new treatment options is critical. In this review, we focus on the role of PTMs (e.g., phosphorylation, acetylation, ubiquitination, glycosylation, and methylation) among the highly prevalent and medically relevant fungal pathogens, Candida spp., Aspergillus spp., and Cryptococcus spp. We explore the role of PTMs in fungal stress response and host adaptation, the use of PTMs to manipulate host cells and the immune system upon fungal invasion, and the importance of PTMs in conferring antifungal resistance. We also provide a critical view on the current knowledgebase, pose questions key to our understanding of the intricate roles of PTMs within fungal pathogens, and provide research opportunities to uncover new therapeutic strategies.


2014 ◽  
Vol 941-944 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hui Li Zhang ◽  
Lin Chen ◽  
Wen Na Li ◽  
Li Li Wang ◽  
Hong Yu Xie

MicroRNAs (miRNAs) are endogenous small RNAs transcribed from non-coding DNA, which have the capacity to base pair with the target mRNAs (messenger RNAs) to repress their translation or resulted in cleavage. We have paid much attention on the DNA and its coded proteins, the discovery of miRNAs as gene negatively regulators has led to a fundamental change in understanding of post-transcriptional gene regulation in plants. Fungal pathogens infection is the main cause of most economic crops diseases. Unlike humans, plants don’t evolved to have a adaptive immune system, they protect themselves with a mechanism consists of activation and response. Recently, high throughput sequencing validated that miRNA play a crucial role in plant-fungus interaction. A better understanding of miRNA-mediated disease mechanism in fungi should clarify the strategy of crop disease control. MiRNA-based manipulations as gene suppressors, such as artificial miRNAs, may emerge as a new alternative approach for the improvement of crops and control of crop disease.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3032 ◽  
Author(s):  
Suresh Mickymaray ◽  
Wael Alturaiki

Fungal sensitization is very common in bronchial asthmatic cases, and the connection with airway colonization by fungi remains uncertain. Antifungal therapy failure is a significant fraction of the cost and morbidity and mortality in the majority of the asthmatic cases. Hence, the present study aimed to investigate the antifungal activity of five marine macroalgae—Acanthaophora specifera, Cladophoropsis sp., Laurencia paniculata, Tydemania sp., and Ulva prolifera—which were tested on selected fungal pathogens isolated from 15 sputum of 45 bronchial asthmatic patients. The highest antifungal activity was observed in ethanol fractions of L. paniculata followed by U. prolifera, Cladophoropsis sp., A. specifera, and Tydemania sp. The minimum fungicidal concentration and minimum inhibitory concentration values of the ethanolic fractions of algal species were found to be 125–1000 µg/mL and 125–500 µg/mL, respectively. The algal extracts contained terpene alcohol, diterpene, steroids, sesquiterpene, and sesquiterpene alcohol, as determined by GC–MS/MS analyses. The present study shows that the marine macroalgae containing bioactive compounds had excellent inhibitory activity against a variety of fungal pathogens, which may be useful for combating fungal infections and recovering from chronic asthmatic states.


Sign in / Sign up

Export Citation Format

Share Document