scholarly journals MaBμlS-2: high-precision microlensing modelling for the large-scale survey era

2020 ◽  
Vol 498 (2) ◽  
pp. 2196-2218
Author(s):  
David Specht ◽  
Eamonn Kerins ◽  
Supachai Awiphan ◽  
Annie C Robin

ABSTRACT Galactic microlensing datasets now comprise in excess of 104 events and, with the advent of next-generation microlensing surveys that may be undertaken with facilities such as the Rubin Observatory (formerly LSST) and Roman Space Telescope (formerly WFIRST), this number will increase significantly. So too will the fraction of events with measurable higher order information, such as finite-source effects and lens–source relative proper motion. Analysing such data requires a more sophisticated Galactic microlens modelling approach. We present a new second-generation Manchester–Besançon Microlensing Simulator (MaBμlS-2), which uses a version of the Besançon population synthesis Galactic model that provides good agreement with stellar kinematics observed by the Hubble Space Telescope (HST) towards the bulge. MaBμlS-2 provides high-fidelity signal-to-noise limited maps of the microlensing optical depth, rate and average time-scale towards a 400 deg2 region of the Galactic bulge in several optical to near-infrared pass-bands. The maps take full account of the unresolved stellar background, as well as limb-darkened source profiles. Comparing MaBμlS-2 with the efficiency-corrected OGLE-IV 8000 event sample shows a much improved agreement over the previous version of MaBμlS and succeeds in matching even small-scale structural features in the OGLE-IV event rate map. However, evidence remains for a small underprediction of the event rate per source and overprediction of the time-scale. MaBμlS-2 is available online (www.mabuls.net, Specht & Kerins) to provide on-the-fly maps for user-supplied cuts in survey magnitude, event time-scale and relative proper motion.

2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


2019 ◽  
Vol 622 ◽  
pp. A128 ◽  
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Mónica Valencia-S. ◽  
Andreas Eckart ◽  
Michal Zajaček ◽  
...  

In the framework of understanding the gas and stellar kinematics and their relations to AGNs and galaxy evolution scenarios, we present spatially resolved distributions and kinematics of the stars and gas in the central ∼800 pc radius of the nearby Seyfert galaxy NGC 1365. We obtained H + K- and K-band near-infrared (NIR) integral-field observations from VLT/SINFONI. Our results reveal strong broad and narrow emission-line components of ionized gas (hydrogen recombination lines Paα and Brγ) in the nuclear region, as well as hot dust with a temperature of ∼1300 K, both typical for type-1 AGNs. From MBH − σ* and the broad components of hydrogen recombination lines, we find a black-hole mass of (5 − 10)×106 M⊙. In the central ∼800 pc, we find a hot molecular gas mass of ∼615 M⊙, which corresponds to a cold molecular gas reservoir of (2 − 8)×108 M⊙. However, there is a molecular gas deficiency in the nuclear region. The gas and stellar-velocity maps both show rotation patterns consistent with the large-scale rotation of the galaxy. However, the gaseous and stellar kinematics show deviations from pure disk rotation, which suggest streaming motions in the central < 200 pc and a velocity twist at the location of the ring which indicates deviations in disk and ring rotation velocities in accordance with published CO kinematics. We detect a blueshifted emission line split in Paα, associated with the nuclear region only. We investigate the star-formation properties of the hot spots in the circumnuclear ring which have starburst ages of ≲10 Myr and find indications for an age gradient on the western side of the ring. In addition, our high-resolution data reveal further substructure within this ring which also shows enhanced star forming activity close to the nucleus.


2009 ◽  
Vol 9 (2) ◽  
pp. 623-634 ◽  
Author(s):  
F. Georgescu ◽  
S. Tascu ◽  
M. Caian ◽  
D. Banciu

Abstract. During winter cold strong winds associated with snowfalls are not unusual for South and Southeastern Romania. The episode of 2–4 January 2008 was less usual due to its intensity and persistence. It happened after a long period (autumn 2006–autumn 2007) of mainly southerly circulations inducing warm weather, when the absolute record of the maximum temperature was registered. The important snowfalls and snowdrifts, leading to a consistent snow layer (up to 100 cm), produced serious transport and electricity supply perturbations. Since this atypical local weather event was not correctly represented by the operational numerical forecasts, several cross-comparison numerical simulations were performed to analyze the relative role of the coupler/coupling models and to compare two ways of process-scale uncertainties mitigation: optimizing the forecast range and performing ensemble forecast through the perturbation of the lateral boundary conditions. The results underline, for this case, the importance of physical parametrization package on the first place and secondary, the importance of the model horizontal resolution. The resolution increase is beneficial only in the local process representation; on larger scale it may either improve or decrease the accuracy effect, depending on the specified nudging between large-scale and small-scale information. The event capture is likely to be favored by two elements: a more appropriate time-scale of the event's physics and the quality of the transmitted large-scale information. Concerning the time scale, the statistics on skill as a function of forecast range are shown to be a useful tool in order to increase the accuracy of the numerical simulations. Ensembles forecasting versus resolution increase experiments indicate, for such atypical events, an interesting supply in the forecast accuracy through the ensemble method when applied to correct the minimum skill of the deterministic forecast.


2019 ◽  
Author(s):  
Nicolas Gauthier

Archaeological settlement patterns are the physical remains of complex webs of human decision-making and social interaction. Entropy-maximizing spatial interaction models are a means of building parsimonious models that average over much of this small-scale complexity, while maintaining key large-scale structural features. Dynamic social interaction models extend this approach by allowing archaeologists to explore the co-evolution of human settlement systems and the networks of interaction that drive them. Yet, such models are often imprecise, relying on generalized notions of settlement "influence" and "attractiveness" rather than concrete material flows of goods and people. Here, I present a dis-aggregated spatial interaction model that explicitly resolves trade and migration flows and their combined influence on settlement growth and decline. I explore how the balance of costs and benefits of each type of interaction influence long-term settlement patterns. I find trade flows are the strongest determinant of equilibrium settlement structure, and that migration flows play a more transient role in balancing site hierarchies. This model illustrates how the broad toolkit for spatial interaction modeling developed in geography and economics can increase the precision of quantitative theory building in archaeology, and provides a road-map for connecting mechanistic models to the empirical archaeological record.


2015 ◽  
Vol 12 (S316) ◽  
pp. 196-201
Author(s):  
Enrique Vázquez-Semadeni ◽  
Alejandro González-Samaniego ◽  
Manuel Zamora-Avilés ◽  
Pedro Colín

AbstractWe discuss the mechanism of cluster formation in hierarchically collapsing molecular clouds. Recent evidence, both observational and numerical, suggests that molecular clouds (MCs) may be undergoing global, hierarchical gravitational collapse. The “hierarchical” regime consists of small-scale collapses within larger-scale ones. The latter implies that the star formation rate increases systematically during the early stages of evolution, and occurs via filamentary flows onto “hubs” of higher density, mass, and velocity dispersion, and culminates a few Myr after than the small-scale collapses have started to form stars. In turn, the small-scale collapses occur in clumps embedded in the filaments, and are themselves falling into the larger potential well of the still-ongoing large-scale collapse. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps towards the larger potential trough, so that the filaments feed both gaseous and stellar material to the hubs. This leads to the presence of older stars in a region where new protostars are still forming, to a scale-free or fractal structure of the clusters, in which each unit is composed of smaller-scale ones, and to the eventual merging of the subunits, explaining the observed structural features of open clusters.


Author(s):  
H. Bondi

1. Introduction. A considerable amount of attention has been paid to the problem of determining the conditions which decide whether a liquid heated from below is stable or unstable. The motion consequent upon the disturbance of an unstable ideal gas does not, however, seem to have been treated so far, and this problem forms the subject of the present paper. Heat conduction and viscosity are at first neglected, and we are therefore dealing with the small motions of a gas slightly disturbed from a position of equilibrium under the influence of gravity. The condition for the stability of such a gas is well known, namely, the temperature gradient must be less than the adiabatic gradient. Furthermore, it is known that there is a sharp distinction between slow large-scale (meteorological) and rapidly varying small-scale (acoustical) phenomena. The present paper confirms these points and derives the time scale of meteorological phenomena. Heat conduction and viscosity are then shown to set a lower limit to the dimensions of such disturbances, while the effect of the earth's rotation is shown to be negligible.


2020 ◽  
Vol 13 (12) ◽  
pp. 6407-6426
Author(s):  
Maurits L. Kooreman ◽  
Piet Stammes ◽  
Victor Trees ◽  
Maarten Sneep ◽  
L. Gijsbert Tilstra ◽  
...  

Abstract. The ultraviolet (UV) Absorbing Aerosol Index (AAI) is widely used as an indicator for the presence of absorbing aerosols in the atmosphere. Here we consider the TROPOMI AAI based on the 340 nm/380 nm wavelength pair. We investigate the effects of clouds on the AAI observed at small and large scales. The large-scale effects are studied using an aggregate of TROPOMI measurements over an area mostly devoid of absorbing aerosols (Pacific Ocean). The study reveals that several structural features can be distinguished in the AAI, such as the cloud bow, viewing zenith angle dependence, sunglint, and a previously unexplained increase in AAI values at extreme viewing and solar geometries. We explain these features in terms of the bidirectional reflectance distribution function (BRDF) of the scene in combination with the different ratios of diffuse and direct illumination of the surface at 340 and 380 nm. To reduce the dependency on the BRDF and homogenize the AAI distribution across the orbit, we present three different AAI retrieval models: the traditional Lambertian scene model (LSM), a Lambertian cloud model (LCM), and a scattering cloud model (SCM). We perform a model study to assess the propagation of errors in auxiliary databases used in the cloud models. The three models are then applied to the same low-aerosol region. Results show that using the LCM and SCM gives on average a higher AAI than the LSM. Additionally, a more homogeneous distribution is retrieved across the orbit. At the small scale, related to the high spatial resolution of TROPOMI, strong local increases and decreases in AAI are observed in the presence of clouds. The BRDF effect presented here is a first step – more research is needed to explain the small-scale cloud effects on the AAI.


1991 ◽  
Vol 58 (2) ◽  
pp. 450-463 ◽  
Author(s):  
C. F. Shih ◽  
R. J. Asaro ◽  
N. P. O’Dowd

In Parts I and II, the structure of small-scale yielding fields of interface cracks were described in the context of small strain plasticity and J2 deformation theory. These fields are members of a family parameterized by the plastic phase angle ξ which also determines the shape or phase of the plastic zone. Through full-field analysis, we showed the resemblance between the plane-strain interface crack-tip fields and mixed-mode HRR fields in homogeneous material. This connection was exploited, to the extent possible, inasmuch as the interface fields do not appear to have a separable form. The present investigation is focused on “opening” dominated load states (| ξ | ≤ π/6) and the scope is broadened to include finite ligament plasticity and finite deformation effects on near-tip fields. We adopt a geometrically rigorous formulation of J2 flow theory taking full account of crack-tip blunting. Our results reveal several surprising effects, that have important implications for fracture, associated with finite ligament plasticity and finite strains. For one thing the fields that develop near bimaterial interfaces are more intense than those in homogeneous material when compared at the same value of J or remote load. For example, the plastic zones, plastic strains, and the crack-tip openings, δt, that evolve near bimaterial interfaces are considerably larger than those that develop in homogeneous materials. The stresses within the finite strain zone are also higher. In addition, a localized zone of high hydrostatic stresses develops near the crack tip but then expands rapidly within the weaker material as the plasticity spreads across the ligament. These stresses can be as much as 30 percent higher than those in homogeneous materials. Thus, the weaker material is subjected to large stresses as well as strains—states which promote ductile fracture processes. At the same time, the accompanying high interfacial stresses can promote interfacial fracture.


2018 ◽  
Vol 10 (9) ◽  
pp. 3257 ◽  
Author(s):  
Qian Wang ◽  
Yangyang Liu ◽  
Linjing Tong ◽  
Weihong Zhou ◽  
Xiaoyu Li ◽  
...  

An agricultural drought disaster was analyzed with the new insight of rescaled statistics (R/S) and wavelet analysis in this study. The results showed that: (1) the Hurst index of the agricultural disaster area, the inundated area of agricultural drought disaster, and the grain loss was 0.821, 0.874, and 0.953, respectively, indicating that the process of the agricultural drought disaster had stronger positive continuity during the study period; (2) based on the Morlet analysis of the agricultural disaster area, the inundated area of the agricultural drought disaster, and the grain loss of China from 1950 to 2016, the time series of the agricultural drought had multiple time scale features with the periodic variation on a large scale containing the periodic variation on a small scale; and (3) in the last 67 years, the strong wavelet energy spectrum of the agricultural disaster area, the inundated area of the agricultural drought disaster, and the grain loss was at the time scale of ≈22–32 years, ≈24–32 years, and ≈25–32 years, respectively. In addition, the first major period in the agricultural drought disaster area, the inundated area of agricultural drought disaster, and the grain loss had average periods of approximately 16 years, 16 years, and 18 years, respectively.


Sign in / Sign up

Export Citation Format

Share Document