scholarly journals A severe blizzard event in Romania – a case study

2009 ◽  
Vol 9 (2) ◽  
pp. 623-634 ◽  
Author(s):  
F. Georgescu ◽  
S. Tascu ◽  
M. Caian ◽  
D. Banciu

Abstract. During winter cold strong winds associated with snowfalls are not unusual for South and Southeastern Romania. The episode of 2–4 January 2008 was less usual due to its intensity and persistence. It happened after a long period (autumn 2006–autumn 2007) of mainly southerly circulations inducing warm weather, when the absolute record of the maximum temperature was registered. The important snowfalls and snowdrifts, leading to a consistent snow layer (up to 100 cm), produced serious transport and electricity supply perturbations. Since this atypical local weather event was not correctly represented by the operational numerical forecasts, several cross-comparison numerical simulations were performed to analyze the relative role of the coupler/coupling models and to compare two ways of process-scale uncertainties mitigation: optimizing the forecast range and performing ensemble forecast through the perturbation of the lateral boundary conditions. The results underline, for this case, the importance of physical parametrization package on the first place and secondary, the importance of the model horizontal resolution. The resolution increase is beneficial only in the local process representation; on larger scale it may either improve or decrease the accuracy effect, depending on the specified nudging between large-scale and small-scale information. The event capture is likely to be favored by two elements: a more appropriate time-scale of the event's physics and the quality of the transmitted large-scale information. Concerning the time scale, the statistics on skill as a function of forecast range are shown to be a useful tool in order to increase the accuracy of the numerical simulations. Ensembles forecasting versus resolution increase experiments indicate, for such atypical events, an interesting supply in the forecast accuracy through the ensemble method when applied to correct the minimum skill of the deterministic forecast.

2016 ◽  
Author(s):  
R. J. Haarsma ◽  
M. Roberts ◽  
P. L. Vidale ◽  
C. A. Senior ◽  
A. Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest the possibility for significant changes in both large-scale aspects of circulation, as well as improvements in small-scale processes and extremes. However, such high resolution global simulations at climate time scales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centers and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other MIPs. Increases in High Performance Computing (HPC) resources, as well as the revised experimental design for CMIP6, now enables a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility to extend to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulation. HighResMIP thereby focuses on one of the CMIP6 broad questions: “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2020 ◽  
Vol 498 (2) ◽  
pp. 2196-2218
Author(s):  
David Specht ◽  
Eamonn Kerins ◽  
Supachai Awiphan ◽  
Annie C Robin

ABSTRACT Galactic microlensing datasets now comprise in excess of 104 events and, with the advent of next-generation microlensing surveys that may be undertaken with facilities such as the Rubin Observatory (formerly LSST) and Roman Space Telescope (formerly WFIRST), this number will increase significantly. So too will the fraction of events with measurable higher order information, such as finite-source effects and lens–source relative proper motion. Analysing such data requires a more sophisticated Galactic microlens modelling approach. We present a new second-generation Manchester–Besançon Microlensing Simulator (MaBμlS-2), which uses a version of the Besançon population synthesis Galactic model that provides good agreement with stellar kinematics observed by the Hubble Space Telescope (HST) towards the bulge. MaBμlS-2 provides high-fidelity signal-to-noise limited maps of the microlensing optical depth, rate and average time-scale towards a 400 deg2 region of the Galactic bulge in several optical to near-infrared pass-bands. The maps take full account of the unresolved stellar background, as well as limb-darkened source profiles. Comparing MaBμlS-2 with the efficiency-corrected OGLE-IV 8000 event sample shows a much improved agreement over the previous version of MaBμlS and succeeds in matching even small-scale structural features in the OGLE-IV event rate map. However, evidence remains for a small underprediction of the event rate per source and overprediction of the time-scale. MaBμlS-2 is available online (www.mabuls.net, Specht & Kerins) to provide on-the-fly maps for user-supplied cuts in survey magnitude, event time-scale and relative proper motion.


2016 ◽  
Vol 9 (11) ◽  
pp. 4185-4208 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Catherine A. Senior ◽  
Alessio Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


Author(s):  
Dhruv Balwada ◽  
Qiyu Xiao ◽  
Shafer Smith ◽  
Ryan Abernathey ◽  
Alison R. Gray

AbstractIt has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 52
Author(s):  
Iman Borazjani

Copepods are small aquatic creatures which are abundant in oceans as a major food source for fish, thereby playing a vital role in marine ecology. Because of their role in the food chain, copepods have been subject to intense research through different perspectives from anatomy, form-function biology, to ecology. Numerical simulations can uniquely support such investigations by quantifying: (i) the force and flow generated by different parts of the body, thereby clarify the form-function relation of each part; (ii) the relation between the small-scale flow around animal and the large-scale (e.g., oceanic) flow of its surroundings; and (iii) the flow and its energetics, thereby answering ecological questions, particularly, the three major survival tasks, i.e., feeding, predator avoidance, and mate-finding. Nevertheless, such numerical simulations need to overcome challenges involving complex anatomic shape of copepods, multiple moving appendages, resolving different scales (appendage-, animal- to large-scale). The numerical methods capable of handling such problems and some recent simulations are reviewed. At the end, future developments necessary to simulate copepods from animal- to surrounding-scale are discussed.


2014 ◽  
Vol 8 (2) ◽  
pp. 387-394 ◽  
Author(s):  
M. Schirmer ◽  
B. Jamieson

Abstract. Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.


2015 ◽  
Vol 786 ◽  
pp. 1-4 ◽  
Author(s):  
Paul K. Newton

The paper by Dritschel et al. (J. Fluid Mech., vol. 783, 2015, pp. 1–22) describes the long-time behaviour of inviscid two-dimensional fluid dynamics on the surface of a sphere. At issue is whether the flow settles down to an equilibrium or whether, for generic (random) initial conditions, the long-time solution is periodic, quasi-periodic or chaotic. While it might be surprising that this issue is not settled in the literature, it is important to keep in mind that the Euler equations form a dissipationless Hamiltonian system, hence the set of equations only redistributes the initial vorticity, generating smaller and smaller scales, while keeping kinetic energy, angular impulse and an infinite family of vorticity moments (Casimirs) intact. While special solutions that never settle down to an equilibrium state can be constructed using point vortices, vortex patches and other distributions, the fate of random initial conditions is a trickier problem. Previous statistical theories indicate that the long-time state should be a stationary large-scale distribution of vorticity. By carrying out careful numerical simulations using two different methods, the authors make a compelling case that the generic long-time state resembles a large-scale oscillating quadrupolar vorticity field, surrounded by persistent small-scale vortices. While numerical simulations can never conclusively settle this issue, the results might help guide future theories that seek to prove the existence of such an interesting dynamical long-time state.


2020 ◽  
Author(s):  
Jon Ander Arrillaga ◽  
Pedro Jiménez ◽  
Jordi Vilà-Guerau de Arellano ◽  
Maria Antonia Jiménez ◽  
Carlos Román-Cascón ◽  
...  

&lt;p&gt;We investigate sea-breeze (SB) frontal passages troughout a 10-year period. Spanning the whole period, numerical simulations from the Weather Research and Forecasting (WRF) model are compared with a comprehensive observational database from the Cabauw Experimental Site (Ruisdael Project). On the one hand, a fine horizontal resolution of 2 km is employed in the numerical simulations, and the observational vertical levels within the first 200 m above the surface are replicated. On the other hand, an algorithm based on objective and strict filters is applied to both observations and simulations to select the SB events. This methodology allows to investigate the atmospheric scales influencing the SB formation and their interaction with local turbulence in a robust and objective way.&lt;/p&gt;&lt;p&gt;By carrying out a filter-by-filter comparison, we find that the simulated large-scale conditions show a good rate of coincidence with the observations (69%). Small biases in the large scale wind direction, however, induce important deviations in the surface-wind evolution. Regarding the mesoscale forcings, the land-sea temperature gradient is overestimated in average up to 4 K, producing stronger SB fronts in WRF. The analysis of the SB frontal characteristics and impacts is carried out by classifying the events into three boundary-layer regimes (convective, transition and stable) based on the value of the sensible-heat flux at the moment of the SB onset. The stronger SB in the model leads to enhanced turbulence particularly in the convective and transition regimes: the friction velocity, for instance, is overstated by around 50% at the SB onset. In addition, the arrival of the SB front enhances the stable stratification and gives rise to faster afternoon and evening transitions compared with situations solely driven by local atmospheric turbulence.&lt;/p&gt;&lt;p&gt;The obtained results can be considered a benchmark of the aspects to be improved in order to produce finer SB forecasts and more adequate representations of the associated physical processes, particularly during the afternoon and evening transition of the ABL.&lt;/p&gt;


2000 ◽  
Vol 407 ◽  
pp. 235-263 ◽  
Author(s):  
OLIVER BÜHLER

Theoretical and numerical results are presented on the transport of vorticity (or potential vorticity) due to dissipating gravity waves in a shallow-water system with background rotation and bottom topography. The results are obtained under the assumption that the flow can be decomposed into small-scale gravity waves and a large-scale mean flow. The particle-following formalism of ‘generalized Lagrangian-mean’ theory is then used to derive an ‘effective mean force’ that captures the vorticity transport due to the dissipating waves. This can be achieved without neglecting other, non-dissipative, effects which is an important practical consideration. It is then shown that the effective mean force obeys the so-called ‘pseudomomentum rule’, i.e. the force is approximately equal to minus the local dissipation rate of the wave's pseudomomentum. However, it is also shown that this holds only if the underlying dissipation mechanism is momentum-conserving. This requirement has important implications for numerical simulations, and these are discussed.The novelty of the results presented here is that they have been derived within a uniform theoretical framework, that they are not restricted to small wave amplitude, ray-tracing or JWKB-type approximations, and that they also include wave dissipation by breaking, or shock formation. The theory is tested carefully against shock-capturing nonlinear numerical simulations, which includes the detailed study of a wavetrain subject to slowly varying bottom topography. The theory is also cross-checked in the appropriate asymptotic limit against recently formulated weakly nonlinear theories. In addition to the general finite-amplitude theory, detailed small-amplitude expressions for the main results are provided in which the explicit appearance of Lagrangian fields can be avoided. The motivation for this work stems partly from an on-going study of high-altitude breaking of internal gravity waves in the atmosphere, and some preliminary remarks on atmospheric applications and on three-dimensional stratified versions of these results are given.


Author(s):  
H. Bondi

1. Introduction. A considerable amount of attention has been paid to the problem of determining the conditions which decide whether a liquid heated from below is stable or unstable. The motion consequent upon the disturbance of an unstable ideal gas does not, however, seem to have been treated so far, and this problem forms the subject of the present paper. Heat conduction and viscosity are at first neglected, and we are therefore dealing with the small motions of a gas slightly disturbed from a position of equilibrium under the influence of gravity. The condition for the stability of such a gas is well known, namely, the temperature gradient must be less than the adiabatic gradient. Furthermore, it is known that there is a sharp distinction between slow large-scale (meteorological) and rapidly varying small-scale (acoustical) phenomena. The present paper confirms these points and derives the time scale of meteorological phenomena. Heat conduction and viscosity are then shown to set a lower limit to the dimensions of such disturbances, while the effect of the earth's rotation is shown to be negligible.


Sign in / Sign up

Export Citation Format

Share Document