scholarly journals A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters

Author(s):  
Kyle A Oman ◽  
Yannick M Bahé ◽  
Julia Healy ◽  
Kelley M Hess ◽  
Michael J Hudson ◽  
...  

Abstract We combine orbital information from N-body simulations with an analytic model for star formation quenching and SDSS observations to infer the differential effect of the group/cluster environment on star formation in satellite galaxies. We also consider a model for gas stripping, using the same input supplemented with H i fluxes from the ALFALFA survey. The models are motivated by and tested on the Hydrangea cosmological hydrodynamical simulation suite. We recover the characteristic times when satellite galaxies are stripped and quenched. Stripping in massive (Mvir ∼ 1014.5 M⊙) clusters typically occurs at or just before the first pericentric passage. Lower mass (∼1013.5 M⊙) groups strip their satellites on a significantly longer (by ∼3 Gyr) timescale. Quenching occurs later: Balmer emission lines typically fade ∼3.5 Gyr (5.5 Gyr) after first pericentre in clusters (groups), followed a few hundred Myr later by reddenning in (g − r) colour. These ‘delay timescales’ are remarkably constant across the entire satellite stellar mass range probed (∼109.5–1011 M⊙), a feature closely tied to our treatment of ‘group pre-processing’. The lowest mass groups in our sample (∼1012.5 M⊙) strip and quench their satellites extremely inefficiently: typical timescales may approach the age of the Universe. Our measurements are qualitatively consistent with the ‘delayed-then-rapid’ quenching scenario advocated for by several other studies, but we find significantly longer delay times. Our combination of a homogeneous analysis and input catalogues yields new insight into the sequence of events leading to quenching across wide intervals in host and satellite mass.

2020 ◽  
Vol 496 (1) ◽  
pp. 442-455 ◽  
Author(s):  
Kshitija Kelkar ◽  
K S Dwarakanath ◽  
Bianca M Poggianti ◽  
Alessia Moretti ◽  
Rogério Monteiro-Oliveira ◽  
...  

ABSTRACT We present a detailed analysis of star formation properties of galaxies in a nearby (z ∼ 0.046) young (∼0.6 Gyr) post-merger cluster system A3376, with a moderate merger shock front (vs ∼1630 km s−1; $\mathcal {M}$ ∼ 2) observed as symmetric radio relics. Exploiting the spectroscopic data from the wide-field OmegaWINGS survey and the associated photometric information, our investigations reveal the plausible effects of the dynamic post-merger environment differing from the high-density cluster environment experienced prior to the merging activity. The remnants of the pre-merger relaxed cluster environment are realized through the existence of passive spiral galaxies located in the central regions of the cluster between the two brightest cluster galaxies. We discover A3376 to contain a population of massive (log (M*/M⊙) > 10) blue regular star-forming spirals in regions of maximum merger shock influence but exhibiting star formation rates similar to those in relaxed clusters at similar epoch. We further discover low-mass (log (M*/M⊙) ≤ 10) late-type blue post-starburst galaxies which could either be formed as a result of rapid quenching of low-mass spirals following the shock-induced star formation or due to the intense surge in the intracluster medium pressures at the beginning of the merger. With the possibility of the merger shock affecting high- and low-mass spirals differently, our results bridge the seemingly contradictory results observed in known merging cluster systems so far and establish that different environmental effects are at play right from pre- to post-merger stages.


2019 ◽  
Vol 488 (1) ◽  
pp. 847-858 ◽  
Author(s):  
Diego Pallero ◽  
Facundo A Gómez ◽  
Nelson D Padilla ◽  
S Torres-Flores ◽  
R Demarco ◽  
...  

ABSTRACT We use the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulation to trace the quenching history of galaxies in its 10 most massive clusters. We use two criteria to identify moments when galaxies suffer significant changes in their star formation activity: (i) the instantaneous star formation rate (SFR) strongest drop, $\Gamma _{\rm SFR}^{\rm SD}$, and (ii) a ‘quenching’ criterion based on a minimum threshold for the specific SFR of ≲10$^{-11}\,\rm yr^{-1}$. We find that a large fraction of galaxies (${\gtrsim} 60\,{\rm per\,cent}$) suffer their $\Gamma _{\rm SFR}^{\rm SD}$ outside the cluster’s R200. This ‘pre-processed’ population is dominated by galaxies that are either low mass and centrals or inhabit low-mass hosts (1010.5 ≲ Mhost ≲ 1011.0 M⊙). The host mass distribution is bimodal, and galaxies that suffered their $\Gamma _{\rm SFR}^{\rm SD}$ in massive hosts ($10^{13.5} \lesssim M_{\rm host} \lesssim 10^{14.0}\, \mathrm{M}_{\odot }$) are mainly processed within the clusters. Pre-processing mainly limits the total stellar mass with which galaxies arrive in the clusters. Regarding quenching, galaxies preferentially reach this state in high-mass haloes ($10^{13.5} \lesssim M_{\rm host} \lesssim 10^{14.5}\, \mathrm{M}_{\odot }$). The small fraction of galaxies that reach the cluster already quenched have also been pre-processed, linking both criteria as different stages in the quenching process of those galaxies. For the z = 0 satellite populations, we find a sharp rise in the fraction of quenched satellites at the time of first infall, highlighting the role played by the dense cluster environment. Interestingly, the fraction of pre-quenched galaxies rise with final cluster mass. This is a direct consequence of the hierarchical cosmological model used in these simulations.


2006 ◽  
Vol 2 (S235) ◽  
pp. 394-394
Author(s):  
Andrew Bunker ◽  
Michelle Doherty ◽  
Rob Sharp ◽  
Ian Parry ◽  
Gavin Dalton ◽  
...  

AbstractWe have demonstrated the first near-infrared multi-object spectrograph, CIRPASS, on the 4.2-m William Herschel Telescope (WHT) and the 3.9-m Anglo-Australian Telescope. We have conducted an Hα survey of 38 0.77 < z < 1 galaxies over ~100 arcmin2 of the Hubble Deep Field North and Flanking Fields, to determine star formation rates (SFRs) using CIRPASS on the WHT. This represents the first successful application of this technique to observing high redshift galaxies (Doherty et al. 2004). Stacking the spectra in the rest-frame, we find a lower limit (uncorrected for dust reddening) on the star formation rate density at redshift z = 1 of 0.04 M⊙ yr−1 Mpc−3 (Doherty et al. 2006). This implies rapid evolution in the star formation rate density from z = 0 to z = 1 which is proportional to (1 + z)3.1. We intend to extend our work with FMOS on Subaru as the evolSMURF project (the Evolution of Star-formation and Metallicity in the Universe at high Redshift with FMOS). This will represent nearly two orders-of-magnitude improvement on previous work, and for the first time will provide a sample of sufficient size to measure accurately the Hα luminosity function, and so determine the global star formation rate using the same indicator as used in local surveys. Using [O II]3727 Å, Hβ, [O III] 5007 Å and Hα redshifted into the z, J & H bands, we can chart the star formation history over 70% of the age of the Universe, affording complete coverage up to z = 1.6 with the same well-understood diagnostics. The line ratios will also allow the extinction and metallicity to be measured at z>1. This will resolve one of the long-standing puzzles in extragalactic astrophysics – the true evolution of the Madau-Lilly diagram of star formation density.


2005 ◽  
Vol 13 ◽  
pp. 566-571
Author(s):  
Varsha P. Kulkarni

AbstractDamped Lyman-alpha absorbers in quasar spectra provide a unique tool to directly measure the abundances of elements in galaxies at red-shifts 0 < z < 5, and hence probe the chemical evolution of galaxies over > 90% of the age of the Universe. Since cosmic chemical evolution models predict the global metallicity of galaxies to increase with time, it is of great interest to determine whether DLAs actually show such a trend. We discuss statistical analysis of existing DLA Zn data to examine the metallicity-redshift relation, and a comparison of the observed data with models of cosmic chemical evolution. We also describe efforts to expand the DLA abundance sample at z < 1.5, where the current data are particularly sparse. Finally, we discuss emission-line imaging studies of the absorber galaxies and compare constraints on their star formation rates with models based on the global star formation history.


2019 ◽  
Vol 488 (3) ◽  
pp. 4169-4180 ◽  
Author(s):  
Sree Oh ◽  
Keunho Kim ◽  
Joon Hyeop Lee ◽  
Minjin Kim ◽  
Yun-Kyeong Sheen ◽  
...  

ABSTRACT We examine the ultraviolet and optical colours of 906 cluster galaxies from the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). The sample has been divided into two categories, morphologically disturbed and undisturbed galaxies, based on the visual signatures related to recent mergers. We find that galaxies with signatures of recent mergers show significantly bluer colours than undisturbed galaxies. Disturbed galaxies populate more on the cluster outskirts, suggesting recent accretion into the cluster environment, which implies that disturbed galaxies can be less influenced by the environmental quenching process and remain blue. However, we still detect bluer colours of disturbed galaxies in all locations (cluster core and outskirts) for the fixed morphology, which is difficult to understand just considering the difference in time since infall into a cluster. Moreover, blue disturbed galaxies show features seemingly related to recent star formation. Therefore, we suspect that mergers make disturbed galaxies keep their blue colour longer than undisturbed galaxies under the effect of the environmental quenching through either merger-induced star formation or central gas concentration which is less vulnerable for gas stripping.


Author(s):  
Luigi Spinoglio ◽  
Sabrina Mordini ◽  
Juan Antonio Fernández-Ontiveros ◽  
Almudena Alonso-Herrero ◽  
Lee Armus ◽  
...  

Abstract We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1– $15\, \rm{deg^2}$ ) with a mid-IR imaging spectrometer (17– $36\, \rm{\rm{\upmu m}}$ ) in conjunction with deep $70\, \rm{\rm{\upmu m}}$ photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than $\sim$ 2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to $z \sim 3.5$ . Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17– $210\, \rm{\rm{\upmu m}}$ ), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon ( $z \sim 1$ –3), through IR emission lines and features that are insensitive to the dust obscuration.


2020 ◽  
Vol 497 (1) ◽  
pp. 37-43
Author(s):  
P Kroupa ◽  
M Haslbauer ◽  
I Banik ◽  
S T Nagesh ◽  
J Pflamm-Altenburg

ABSTRACT The majority of galaxies with current star formation rates (SFRs), $\rm SFR_{\rm o} \ge 10^{-3} \, M_\odot\,yr^{-1}$, in the Local Cosmological Volume, where observations should be reliable, have the property that their observed SFRo is larger than their average SFR. This is in tension with the evolution of galaxies described by delayed-τ models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation time-scale τ ≈ 6.7 Gyr, much longer than the 3.5–4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form ∝(t − t1)η for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that η = 0.18 ± 0.03. This suggested near-constancy of a galaxy’s SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024
Author(s):  
Biplab Paik

Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to [Formula: see text] s after the big-bang, as the cosmological temperature of the Universe grew above [Formula: see text] K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.


Author(s):  
L. Cortese ◽  
B. Catinella ◽  
R. Smith

Abstract One of the key open questions in extragalactic astronomy is what stops star formation in galaxies. While it is clear that the cold gas reservoir, which fuels the formation of new stars, must be affected first, how this happens and what are the dominant physical mechanisms involved is still a matter of debate. At least for satellite galaxies, it is generally accepted that internal processes alone cannot be responsible for fully quenching their star formation, but that environment should play an important, if not dominant, role. In nearby clusters, we see examples of cold gas being removed from the star-forming discs of galaxies moving through the intracluster medium, but whether active stripping is widespread and/or necessary to halt star formation in satellites, or quenching is just a consequence of the inability of these galaxies to replenish their cold gas reservoirs, remains unclear. In this work, we review the current status of environmental studies of cold gas in star-forming satellites in the local Universe from an observational perspective, focusing on the evidence for a physical link between cold gas stripping and quenching of the star formation. We find that stripping of cold gas is ubiquitous in satellite galaxies in both group and cluster environments. While hydrodynamical mechanisms such as ram pressure are important, the emerging picture across the full range of dark matter halos and stellar masses is a complex one, where different physical mechanisms may act simultaneously and cannot always be easily separated. Most importantly, we show that stripping does not always lead to full quenching, as only a fraction of the cold gas reservoir might be affected at the first pericentre passage. We argue that this is a key point to reconcile apparent tensions between statistical and detailed analyses of satellite galaxies, as well as disagreements between various estimates of quenching timescales. We conclude by highlighting several outstanding questions where we expect to see substantial progress in the coming decades, thanks to the advent of the Square Kilometre Array and its precursors, as well as the next-generation optical and millimeter facilities.


Sign in / Sign up

Export Citation Format

Share Document