Regimes of mini black hole abandoned to accretion

2018 ◽  
Vol 33 (03) ◽  
pp. 1850024
Author(s):  
Biplab Paik

Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to [Formula: see text] s after the big-bang, as the cosmological temperature of the Universe grew above [Formula: see text] K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

2011 ◽  
Vol 20 (06) ◽  
pp. 1039-1051 ◽  
Author(s):  
NINFA RADICELLA ◽  
MAURO SERENO ◽  
ANGELO TARTAGLIA

The cosmic defect theory has been confronted with four observational constraints: primordial nuclear species abundances emerging from the big bang nucleosynthesis; large scale structure formation in the Universe; cosmic microwave background acoustic scale; luminosity distances of type Ia supernovae. The test has been based on a statistical analysis of the a posteriori probabilities for three parameters of the theory. The result has been quite satisfactory and such that the performance of the theory is not distinguishable from that of the ΛCDM theory. The use of the optimal values of the parameters for the calculation of the Hubble constant and the age of the Universe confirms the compatibility of the cosmic defect approach with observations.


Author(s):  
F. Melia ◽  
T. M. McClintock

The recent discovery of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.3 has exacerbated the time compression problem implied by the appearance of supermassive black holes only approximately 900 Myr after the big bang, and only approximately 500 Myr beyond the formation of Pop II and III stars. Aside from heralding the onset of cosmic re-ionization, these first and second generation stars could have reasonably produced the approximately 5–20  M ⊙ seeds that eventually grew into z approximately 6–7 quasars. But this process would have taken approximately 900 Myr, a timeline that appears to be at odds with the predictions of Λ CDM without an anomalously high accretion rate, or some exotic creation of approximately 10 5   M ⊙ seeds. There is no evidence of either of these happening in the local Universe. In this paper, we show that a much simpler, more elegant solution to the supermassive black hole anomaly is instead to view this process using the age–redshift relation predicted by the R h = ct Universe, an Friedmann–Robertson–Walker (FRW) cosmology with zero active mass. In this context, cosmic re-ionization lasted from t approximately 883 Myr to approximately 2 Gyr ( 6 ≲ z ≲ 15 ), so approximately 5–20  M ⊙ black hole seeds formed shortly after re-ionization had begun, would have evolved into approximately 10 10   M ⊙ quasars by z approximately 6–7 simply via the standard Eddington-limited accretion rate. The consistency of these observations with the age–redshift relationship predicted by R h = ct supports the existence of dark energy; but not in the form of a cosmological constant.


2015 ◽  
Vol 24 (13) ◽  
pp. 1545005 ◽  
Author(s):  
K. M. Belotsky ◽  
A. A. Kirillov ◽  
S. G. Rubin

Here, we briefly discuss the possibility to solve simultaneously with primordial black holes (PBHs) the problems of dark matter (DM), reionization of the universe, origin of positron line from Galactic center and supermassive black hole (BH) in it. Discussed scenario can naturally lead to a multiple-peak broad-mass-range distribution of PBHs in mass, which is necessary for simultaneous solution of the problems.


Think ◽  
2002 ◽  
Vol 1 (1) ◽  
pp. 7-20
Author(s):  
Richard Dawkins

Creationists believe that the Biblical account of the creation of the universe is literally true. God brought into existence the Earth and all its life forms in just six days. According to creationists, this event took place less than ten thousand years ago (they base their calculation of the age of the universe on the number of generations listed in the Bible).Creationists have succeeded in persuading large swathes of the general public that their theory is at least as scientifically respectable as the Big Bang/evolution alternative. A recent Gallup poll indicated that about 45% of US citizens currently believe that God created human beings ‘pretty much in [their] present form at one time or another within the last 10,000 years’.Two states, Arkansas and Louisiana, have even passed ‘balanced treatment’ laws requiring that creationism be taught alongside evolution in all state public schools. It was in Auburn, Alabama, shortly after that state required that a piece of paper be pasted into every biology school text book explaining why evolution is merely a ‘theory’ — and a highly questionable theory at that — that Richard Dawkins delivered the impromptu speech which forms the basis of the following.


2015 ◽  
Vol 7 (6) ◽  
pp. 56
Author(s):  
Zifeng Li

<p class="1Body">Analyzes the Big Bang theory, recession of galaxies, Hubble's law, multi-dimensional space, curved space and black hole in modern cosmology and points out that these six theories are all baseless and irrational, contrary to classical science. Promotes the use of plain view of the universe - the materialist view of space–time-mass-energy to study the universe. The observations and understanding of the universe are very limited now. Cosmology should be realistic, not based on irrational models.</p>


2015 ◽  
Vol 61 ◽  
pp. 467-483
Author(s):  
Donald Lynden-Bell

Wallace Sargent was an astronomer who used large telescopes to great effect. He concentrated on outstanding problems concerning both the origin of the elements and the cosmological evolution of primordial gas clouds. Despite a mainly theoretical education he became an expert spectroscopist and this enabled him to demonstrate that most helium was not formed in stars but was primordial, formed in the Big Bang. This helped to determine the photon : baryon ratio that emerged from it. He played a significant part in the search for the supermassive black holes that were predicted to be in the centres of many galaxies, as is now established. He is most famous for his systematic work with Alec Boksenberg FRS on the intervening hydrogen clouds seen in absorption in the spectra of distant quasars. From their work it appears that most of the 4% of the Universe (by mass) that is now considered to be in normal atoms or ions has indeed been detected, although it is seen at considerable look-back times.


2016 ◽  
Vol 31 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Alireza Sepehri

Recently, some authors proposed a new mechanism which gets rid of the Big Bang singularity and shows that the age of the universe is infinite. In this paper, we will confirm their results and predict that the universe may expand and contract many N fundamental strings decay to N M0–anti-M0-branes. Then, M0-branes join each other and build a M8-anti-M8 system. This system is unstable, broken and two anti-M4-branes, a compactified M4-brane, a M3-brane in addition to one M0-brane are produced. The M3-brane wraps around the compactified M4-brane and both of them oscillate between two anti-M4-branes. Our universe is located on the M3-brane and interacts with other branes by exchanging the M0-brane and some scalars in transverse directions. By wrapping of M3-brane, the contraction epoch of universe starts and some higher order of derivatives of scalar fields in the relevant action of branes are produced which are responsible for generating the generalized uncertainty principle (GUP). By oscillating the compactified M4-M3-brane and approaching one of anti-M4-branes, one end of M3-brane glues to the anti-M4-brane and other end remains sticking and wrapping around M4-brane. Then, by getting away of the M4-M3 system, M4 rolls, wrapped M3 opens and expansion epoch of universe begins. By closing the M4 to anti-M4, the mass of some scalars become negative and they make a transition to tachyonic phase. To remove these states, M4 rebounds, rolls and M3 wraps around it again. At this stage, expansion branch ends and universe enters a contraction epoch again. This process is repeated many times and universe expands and contracts due to oscillation of branes. We obtain the scale factor of universe in this system and find that its values only at t [Formula: see text] shrinks to zero. Thus, in our method, the Big Bang is replaced by the fundamental string and the age of universe is predicted to be infinite. Also, when tachyonic states disappear at the beginning of expansion branch, some extra energy is produced and leads to an increase in the velocity of opening of M3. In these conditions, our universe, which is located on this brane, expands very fast and experiences an inflation epoch. Finally, by reducing the fields in 11-dimensional M-theory to the fields in four-dimensional universe, we show that our theory matches with quantum field theory prescriptions.


2000 ◽  
Vol 17 (1) ◽  
pp. 45-47 ◽  
Author(s):  
Jeremy Mould

AbstractWith the completion of the Hubble Space Telescope (HST) Key Project on the Extragalactic Distance Scale, it is interesting to form the dimensionless quantity H0t0 by multiplying the Hubble Constant by the age of the Universe. In a matter dominated decelerating Universe with a density exceeding 0·26 of the critical value, H0t0 < 1; in an accelerating Universe with the same Ωm = 0·26, but dominated by vacuum energy with ΩV ≥ 1 – Ωm, H0t0 ≥ 1. If the first globular clusters formed 109 years after the Big Bang, then with 95% confidence H0t0 =1·0 ± 0·3. The classical Einstein–de Sitter cosmological model has H0t0 = ⅔.


1983 ◽  
Vol 6 ◽  
pp. 241-253 ◽  
Author(s):  
David N. Schramm

In this paper a review will be made of how one can use nuclear physics to put rather stringent limits on the age of the universe and thus the cosmic distance scale. As the other papers in this session have demonstrated there is some disagreement on the distance scale and thus the limits on the age of the universe (if the cosmological constant Λ = 0.) However, the disagreement is only over the last factor of 2, the basic timescale seems to really be remarkably well agreed upon. The universe is billions of years old - not thousands, not quintillions but billions of years. That our universe has a finite age is philosophically intriguing. That we can estimate that age to a fair degree of accuracy is truly impressive.No single measurement of the time since the Big Bang gives a specific, unambiguous age. Fortunately, we have at our disposal several methods that together fix the age with surprising precision.


Author(s):  
Jae-Kwang Hwang

The origins of the stellar mass neutron black holes and supermassive dark matter black holes without the singularities are reported based on the 4-D Euclidean space. The neutron black holes with the mass of mBH = 5 &ndash; 15 msun are made by the 6-quark merged states (N6q) of two neutrons with the mass (m(N6q) = 10 m(n)) of 9.4 GeV/c2 that gives the black hole mass gap of mBH = 3 &ndash; 5 msun. Also, the supermassive black holes with the mass of mSMBH = 106 &ndash; 1011 msun are made by the merged 3-D states (J(B1B2B3)3 particles) of the dark matters. The supermassive black hole at the center of the Milky way galaxy has the mass of mSMBH = 4.1 106 msun that is consistent with mSMBH = 2.08 - 6.23 106 msun calculated from the 3-D states (J(B1B2B3)3 particles) of the dark matters with the mass of m(J) = 1.95 1015 eV/c2. In other words, this supports the existence of the B1, B2 and B3 dark matters with the proposed masses. The first dark matter black hole (primary black hole) was created at the big bang. This first dark matter black hole decayed to the supermassive dark matter black holes through the secondary dark matter black holes that are explained by the merged states of the J(B1B2B3)3 particles. The universe evolution is closely connected to the decaying process of the dark matter black holes since the big bang. The dark matter cloud states are proposed at the intermediate mass black hole range of mIMBH = 102 &ndash; 105 msun. This can explain why the dark matter black holes are not observed at the intermediate mass black hole range of mIMBH = 102 &ndash; 105 msun.


Sign in / Sign up

Export Citation Format

Share Document