scholarly journals Density profile evolution during prestellar core collapse: Collapse starts at the large scale

Author(s):  
Gilberto C Gómez ◽  
Enrique Vázquez-Semadeni ◽  
Aina Palau

Abstract We study the gravitationally-dominated, accretion-driven evolution of a prestellar core. In our model, as the core’s density increases, it remains immersed in a constant-density environment and so it accretes from this environment, increasing its mass and reducing its Jeans length. Assuming a power-law density profile ρ∝r−p, we compute the rate of change of the slope p, and show that the value p = 2 is stationary, and furthermore, an attractor. The radial profile of the Jeans length scales as rp/2, implying that, for p < 2, there is a radius below which the region is smaller than its Jeans length, thus appearing gravitationally stable and in need of pressure confinement, while, in reality, it is part of a larger-scale collapse and is undergoing compression by the infalling material. In this region, the infall speed decreases towards the center, eventually becoming subsonic, thus appearing ‘coherent’, without the need for turbulence dissipation. We present a compilation of observational determinations of density profiles in dense cores and show that the distribution of their slopes peaks at p ∼ 1.7–1.9, supporting the notion that the profile steepens over time. Finally, we discuss the case of magnetic support in a core in which the field scales as B∝ρβ. For the expected value of β = 2/3, this implies that the mass to magnetic flux ratio also decreases towards the central parts of the cores, making them appear magnetically supported, while in reality they may be part of larger collapsing supercritical region. We conclude that local signatures of either thermal or magnetic support are not conclusive evidence of stability, that the gravitational instability of a region must be established at the large scales, and that the prestellar stage of collapse is dynamic rather than quasistatic.

2015 ◽  
Vol 11 (S315) ◽  
pp. 95-102
Author(s):  
Mario Tafalla

AbstractDense cores are the simplest star-forming sites. They represent the end stage of the fragmentation hierarchy that characterizes molecular clouds, and they likely control the efficiency of star formation via their relatively low numbers. Recent dust continuum observations of entire molecular clouds show that dense cores often lie along large-scale filamentary structures, suggesting that the cores form by some type of fragmentation process in an approximately cylindrical geometry. To understand the formation mechanism of cores, additional kinematic information is needed, and this requires observations in molecular-line tracers of both the dense cores and their surrounding cloud material. Here I present some recent efforts to clarify the kinematic structure of core-forming regions in the nearby Taurus molecular cloud. These new observations show that the filamentary structures seen in clouds are often more complex than suggested by the maps of continuum emission, and that they consist of multiple fiber-like components that have different velocities and sonic internal motions. These components likely arise from turbulent fragmentation of the large-scale flows that generate the filamentary structures. While not all these fiber-like components further fragment to form dense cores, a small group of them does so, likely by gravitational instability. This fragmentation produces characteristic chain-like groups of dense cores that further evolve to form stars.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2006 ◽  
Vol 24 (5) ◽  
pp. 1401-1409 ◽  
Author(s):  
T. Maruyama ◽  
M. Kawamura

Abstract. A transequatorial radio-wave propagation experiment at shortwave frequencies (HF-TEP) was done between Shepparton, Australia, and Oarai, Japan, using the radio broadcasting signals of Radio Australia. The receiving facility at Oarai was capable of direction finding based on the MUSIC (Multiple Signal Classification) algorithm. The results were plotted in azimuth-time diagrams (AT plots). During the daytime, the propagation path was close to the great circle connecting Shepparton and Oarai, thus forming a single line in the AT plots. After sunset, off-great-circle paths, or satellite traces in the AT plot, often appeared abruptly to the west and gradually returned to the great circle direction. However, there were very few signals across the great circle to the east. The off-great-circle propagation was very similar to that previously reported and was attributed to reflection by an ionospheric structure near the equator. From the rate of change in the direction, we estimated the drift velocity of the structure to range mostly from 100 to 300 m/s eastward. Multiple instances of off-great-circle propagation with a quasi-periodicity were often observed and their spatial distance in the east-west direction was within the range of large-scale traveling ionospheric disturbances (LS-TIDs). Off-great-circle propagation events were frequently observed in the equinox seasons. Because there were many morphological similarities, the events were attributed to the onset of equatorial plasma bubbles.


2006 ◽  
Vol 2 (S237) ◽  
pp. 397-397
Author(s):  
F. Bigiel ◽  
F. Walter ◽  
E. de Blok ◽  
E. Brinks ◽  
B. Madore

AbstractWe present first results from THINGS (The HI Nearby Galaxy Survey), which consists of high quality HI maps obtained with the VLA of 34 galaxies across a wide range of galaxy parameters (Hubble type, mass/luminosity). We compare the distribution of HI to the UV emission in our sample galaxies. In particular we present radial profiles of the HI (tracing the neutral interstellar medium) and UV (mainly tracing regions of recent star formation) in our sample galaxies. The azimuthally averaged HI profiles are compared to the predicted critical density above which organized large-scale star formation is believed to start (this threshold is based on the Toomre-Q parameter, which in turn is a measure for local gravitational instability).


2021 ◽  
pp. 1-32
Author(s):  
Mikhail Semenovich Legkostupov

The fundamental principles of the protoplanetary ring model – the model of formation of planetary systems of stars, which is based on the origin and development of large-scale gravitational instabilities (protoplanetary rings) – are extended to the formation of regular planetary satellites. Based on these principles, a complete model of the formation of planetary systems, including their satellites, (model of gas and dust rings) for solar-type stars is proposed.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Stefan Schmidt ◽  
Jana-Katharina Dieks ◽  
Michael Quintel ◽  
Onnen Moerer

Abstract Background The use of ultrasonography in the intensive care unit (ICU) is steadily increasing but is usually restricted to examinations of single organs or organ systems. In this study, we combine the ultrasound approaches the most relevant to ICU to design a whole-body ultrasound (WBU) protocol. Recommendations and training schemes for WBU are sparse and lack conclusive evidence. Our aim was therefore to define the range and prevalence of abnormalities detectable by WBU to develop a simple and fast bedside examination protocol, and to evaluate the value of routine surveillance WBU in ICU patients. Methods A protocol for focused assessments of sonographic abnormalities of the ocular, vascular, pulmonary, cardiac and abdominal systems was developed to evaluate 99 predefined sonographic entities on the day of admission and on days 3, 6, 10 and 15 of the ICU admission. The study was a clinical prospective single-center trial in 111 consecutive patients admitted to the surgical ICUs of a tertiary university hospital. Results A total of 3003 abnormalities demonstrable by sonography were detected in 1275 individual scans of organ systems and 4395 individual single-organ examinations. The rate of previously undetected abnormalities ranged from 6.4 ± 4.2 on the day of admission to 2.9 ± 1.8 on day 15. Based on the sonographic findings, intensive care therapy was altered following 45.1% of examinations. Mean examination time was 18.7 ± 3.2 min, or 1.6 invested minutes per detected abnormality. Conclusions Performing the WBU protocol led to therapy changes in 45.1% of the time. Detected sonographic abnormalities showed a high rate of change in the course of the serial assessments, underlining the value of routine ultrasound examinations in the ICU. Trial registration The study was registered in the German Clinical Trials Register (DRKS, 7 April 2017; retrospectively registered) under the identifier DRKS00010428.


1997 ◽  
Vol 347 ◽  
pp. 37-70 ◽  
Author(s):  
J. R. RISTORCELLI

The mathematical consequences of a few simple scaling assumptions regarding the effects of compressibility are explored using a singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure–dilatation and dilatational dissipation appearing in single-point moment closures for compressible turbulence are obtained. The results obtained, in as much as they come from the same underlying procedure, represent a unified development for both dilatational covariances. While the results are expressed in the context of a statistical turbulence closure they provide, with very few phenomenological assumptions, an interesting and clear mathematical model for the ‘scalar’ effects of compressibility. For homogeneous turbulence with quasi-normal large scales the expressions derived are – in the small turbulent Mach number squared isotropic limit – exact. The expressions obtained contain constants that have a precise physical significance and are defined in terms of integrals of the longitudinal velocity correlation. The pressure–dilatation covariance is found to be a non-equilibrium phenomenon related to the time rate of change of the kinetic energy and internal energy of the turbulence; it is seen to scale with α2M2t εs [Pk/ε−1] (Sk/εs)2. Implicit in the scaling is a dependence on the square of a gradient Mach number, S[lscr ]/c. A new feature indicated by the analysis is the appearance of the Kolmogorov scaling coefficient, α, suggesting that large-scale quantities embodied in the well-established ε∼u˜3/[lscr ] relationship provide a link to the structural dependence of the effects of compressibility. The expressions for the dilatational dissipation are found to depend on the turbulent Reynolds number and scale as M4t (Sk/εs)4R−1t. The scalings for the pressure–dilatation are found to produce an excellent collapse of the pressure–dilatation data from direct numerical simulation.


2021 ◽  
Author(s):  
Ahmed Alghamdi ◽  
Olakunle Ayoola ◽  
Khalid Mulhem ◽  
Mutlaq Otaibi ◽  
Abdulazeez Abdulraheem

Abstract Chokes are an integral part of production systems and are crucial surface equipment that faces rough conditions such as high-pressure drops and erosion due to solids. Predicting choke health is usually achieved by analyzing the relationship of choke size, pressure, and flow rate. In large-scale fields, this process requires extensive-time and effort using the conventional techniques. This paper presents a real-time proactive approach to detect choke wear utilizing production data integrated with AI analytics. Flowing parameters data were collected for more than 30 gas wells. These wells are producing gas with slight solids production from a high-pressure high-temperature field. In addition, these wells are equipped with a multi-stage choke system. The approach of determining choke wear relies on training the AI model on a dataset constructed by comparison of the choke valve rate of change with respect to a smoother slope of the production rate. If the rate of change is not within a tolerated range of divergence, an abnormal choke behavior is detected. The data set was divided into 70% for training and 30% for testing. Artificial Neural Network (ANN) was trained on data that has the following inputs: gas specific gravity, upstream & downstream pressure and temperature, and choke size. This ANN model achieved a correlation coefficient above 0.9 with an excellent prediction on the data points exhibiting normal or abnormal choke behaviors. Piloting this application on large fields, where manual analysis is often impractical, saves a substantial man-hour and generates significant cost-avoidance. Areas for improvement in such an application depends on equipping the ANN network with long-term production profile prediction abilities, such as water production, and this analysis relies on having an accurate reading from the venturi meters, which is often the case in single-phase flow. The application of this AI-driven analytics provides tremendous improvement for remote offshore production operations surveillance. The novel approach presented in this paper capitalizes on the AI analytics for estimating proactively detecting choke health conditions. The advantages of such a model are that it harnesses AI analytics to help operators improve asset integrity and production monitoring compliance. In addition, this approach can be expanded to estimate sand production as choke wear is a strong function of sand production.


Author(s):  
L Hernández-García ◽  
F Panessa ◽  
L Bassani ◽  
G Bruni ◽  
F Ursini ◽  
...  

Abstract Mrk 1498 is part of a sample of galaxies with extended emission line regions (extended outwards up to a distance of ∼7 kpc) suggested to be photo-ionized by an AGN that has faded away or that is still active but heavily absorbed. Interestingly, the nucleus of Mrk 1498 is at the center of two giant radio lobes with a projected linear size of 1.1 Mpc. Our multi-wavelength analysis reveals a complex nuclear structure, with a young radio source (Giga-hertz Peaked Spectrum) surrounded by a strong X-ray nuclear absorption, a mid-infrared spectrum that is dominated by the torus emission, plus a circum-nuclear extended emission in the [OIII] image (with radius of ∼ 1 kpc), most likely related to the ionization of the AGN, aligned with the small and large scale radio jet and extended also at X-rays. In addition a large-scale extended emission (up to ∼ 10 kpc) is only visible in [OIII]. These data show conclusive evidence of a heavily absorbed nucleus and has recently restarted its nuclear activity. To explain its complexity, we propose that Mrk 1498 is the result of a merging event or secular processes, such as a minor interaction, that has triggered the nuclear activity and produced tidal streams. The large-scale extended emission that gives place to the actual morphology could either be explained by star formation or outflowing material from the AGN.


Author(s):  
Yasuo Fukui ◽  
Tsuyoshi Inoue ◽  
Takahiro Hayakawa ◽  
Kazufumi Torii

Abstract A supersonic cloud–cloud collision produces a shock-compressed layer which leads to formation of high-mass stars via gravitational instability. We carried out a detailed analysis of the layer by using the numerical simulations of magneto-hydrodynamics which deal with colliding molecular flows at a relative velocity of 20 km s−1 (Inoue & Fukui 2013, ApJ, 774, L31). Maximum density in the layer increases from 1000 cm−3 to more than 105 cm−3 within 0.3 Myr by compression, and the turbulence and the magnetic field in the layer are amplified by a factor of ∼5, increasing the mass accretion rate by two orders of magnitude to more than 10−4 $ M_{\odot } $ yr−1. The layer becomes highly filamentary due to gas flows along the magnetic field lines, and dense cores are formed in the filaments. The massive dense cores have size and mass of 0.03–0.08 pc and 8–$ 50\, M_{\odot } $ and they are usually gravitationally unstable. The mass function of the dense cores is significantly top-heavy as compared with the universal initial mass function, indicating that the cloud–cloud collision preferentially triggers the formation of O and early B stars. We argue that the cloud–cloud collision is a versatile mechanism which creates a variety of stellar clusters from a single O star like RCW 120 and M 20 to tens of O stars of a super star cluster like RCW 38 and a mini-starburst W 43. The core mass function predicted by the present model is consistent with the massive dense cores obtained by recent ALMA observations in RCW 38 (Torii et al. 2021, PASJ, in press) and W 43 (Motte et al. 2018, Nature Astron., 2, 478). Considering the increasing evidence for collision-triggered high-mass star formation, we argue that cloud–cloud collision is a major mechanism of high-mass star formation.


Sign in / Sign up

Export Citation Format

Share Document