Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis

2020 ◽  
Vol 26 (12) ◽  
pp. 938-952
Author(s):  
Bruna M Garcia ◽  
Thiago S Machado ◽  
Karen F Carvalho ◽  
Patrícia Nolasco ◽  
Ricardo P Nociti ◽  
...  

Abstract Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.

Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2810-2819 ◽  
Author(s):  
Taichi Sugizaki ◽  
Mitsuhiro Watanabe ◽  
Yasushi Horai ◽  
Nao Kaneko-Iwasaki ◽  
Eri Arita ◽  
...  

Dyslipidemic patients with diabetes mellitus, including metabolic syndrome, are at increased risk of coronary heart disease. It has been reported that ezetimibe, a cholesterol absorption inhibitor, improves metabolic diseases in mice and humans. However, the underlying mechanism has been unclear. Here we explored the effects of ezetimibe on lipid and glucose homeostasis. Male KK-Ay mice were fed a high-fat diet, which is the mouse model of metabolic syndrome, with or without ezetimibe for 14 weeks. Ezetimibe improved dyslipidemia, steatosis, and insulin resistance. Ezetimibe decreased hepatic oxysterols, which are endogenous agonists of liver X receptor (LXR), to decrease hepatic lipogenic gene expressions, especially in stearoyl-CoA desaturase-1 (SCD1), leading to a remarkable reduction of hepatic oleate content that would contribute to the improvement of steatosis by reducing triglycerides and cholesterol esters. Simultaneously, hepatic β-oxidation, NADPH oxidase and cytochrome P450 2E1 (CYP2E1) were reduced, and thus reactive oxygen species (ROS) and inflammatory cytokines were also decreased. Consistent with these changes, ezetimibe diminished c-Jun N-terminal kinase (JNK) phosphorylation and improved insulin signaling in the liver. In vitro study using primary hepatocytes obtained from male SD rats, treated with oleate and LXR agonist, showed excess lipid accumulation, increased oxidative stress and impaired insulin signaling. Therefore, in obese subjects, ezetimibe reduces hepatic LXR activity by reducing hepatic oxysterols to lower hepatic oleate content. This improves steatosis and reduces oxidative stress, and this reduction improves insulin signaling in the liver. These results provide insight into pathogenesis and strategies for treatment of the metabolic syndrome.


2021 ◽  
Author(s):  
Emelyne Lécuyer ◽  
Tiphaine Le Roy ◽  
Aurélie Gestin ◽  
Amélie Lacombe ◽  
Catherine Philippe ◽  
...  

Excess of chronic contact between microbial motifs and intestinal immune cells are known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes. <p>The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described but how dendritic cells (DCs) participate to these changes is still poorly documented. To address this question, transgenic mice with enhanced DCs lifespan and immunogenicity (DC<sup>hBcl-2</sup> mice) are challenged with a high-fat diet.</p> <p>Those mice display resistance to DIO and metabolic alterations. The DIO-resistant phenotype is associated with healthier parameters of intestinal barrier function and lower intestinal inflammation. DC<sup>hBcl-2</sup> DIO-resistant mice demonstrate a particular increase in tolerogenic DC numbers and function which is associated with strong intestinal IgA, Th17 and T regulatory immune responses.</p> <p>Microbiota composition and function analyses reveal that the DC<sup>hBcl-2</sup> mice microbiota is characterized by lower immunogenicity and an enhanced butyrate production. Cohousing experiments and fecal microbial transplantations are sufficient to transfer the DIO resistance status to WT mice demonstrating that maintenance of DCs tolerogenic ability sustains a microbiota able to drive DIO resistance. DCs tolerogenic function is revealed as a new potent target in metabolic disease management.</p>


2020 ◽  
Author(s):  
Emelyne Lécuyer ◽  
Tiphaine Le Roy ◽  
Aurélie Gestin ◽  
Amélie Lacombe ◽  
Catherine Philippe ◽  
...  

ABSTRACTExcess of chronic contact between microbial motifs and intestinal immune cells are known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes.The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described but how dendritic cells (DCs) participate to these changes is still poorly documented. To address this question, transgenic mice with enhanced DCs lifespan and immunogenicity (DChBcl-2 mice), are challenged with a high fat diet.Those mice display resistance to DIO and metabolic alterations. The DIO resistant phenotype is associated with healthier parameters of intestinal barrier function and lower intestinal inflammation. DChBcl-2 DIO-resistant mice demonstrate a particular increase in tolerogenic DC numbers and function which is associated with strong intestinal IgA, Th17 and T regulatory immune responses.Microbiota composition and function analyses reveal that the DChBcl-2 mice microbiota is characterized by a lower immunogenicity and an enhanced butyrate production. Cohousing experiments and fecal microbial transplantations are sufficient to transfer the DIO resistance status to WT mice demonstrating that maintenance of DCs tolerogenic ability sustains a microbiota able to drive DIO resistance. DCs tolerogenic function is revealed as a new potent target in metabolic diseases management.


2021 ◽  
Author(s):  
Camila Queiroz-Glauss ◽  
Mariana Vieira ◽  
Marcela Helena Gonçalves-Pereira ◽  
Stephanie Almeida ◽  
Rachel Freire ◽  
...  

Background: Epidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms induced by the parasite that regulate the development of metabolic diseases in the host are unclear. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity. Principal Findings: The presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by higher levels of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also revert the loss of function in Tregs associated with high fat diet. Conclusion: These data suggest that H. polygyrus infection can prevent weight gain and metabolic syndrome in animals fed with high fat diet associated with modulations of adipose tissue Treg cells.


2013 ◽  
Vol 88 (6) ◽  
pp. 1029-1035 ◽  
Author(s):  
Emerson de Andrade Lima ◽  
Mariana Modesto Dantas de Andrade Lima ◽  
Cláudia Diniz Lopes Marques ◽  
Angela Luzia Branco Pinto Duarte ◽  
Ivan da Rocha Pita ◽  
...  

Psoriasis is a polygenic, inflammatory and progressive disease, characterized by an abnormal differentiation and hyperproliferation of keratinocytes, associated with impaired immunologic activation and systemic disorders, while psoriatic arthritis is a chronic inflammatory articular disease. Pathophysiology of psoriasis comprises a dysfunction of the immune system cells with an interactive network between cells and cytokines supporting the initiation and perpetuation of disease and leading to inflammation of skin, enthesis and joints. Recent studies have shown an important role of systemic inflammation in the development of atherosclerosis. Corroborating these findings, patients with severe Psoriasis have marked incidence of psoriatic arthritis, cardiovascular diseases, hypertension, dyslipidemia, obesity and diabetes mellitus, showing an increased risk for acute myocardial infarction, which suggests that the condition is not restricted to the skin. Nuclear receptors are ligand-dependent transcription factors, whose activation affects genes that control vital processes. Among them the peroxisome proliferator-activated receptor is responsible for establishing the relationship between lipids, metabolic diseases and innate immunity. In the skin, peroxisome proliferator-activated receptors have an important effect in keratinocyte homeostasis, suggesting a role in diseases such as psoriasis. The peroxisome proliferator-activated receptors agonists represent a relevant source of research in the treatment of skin conditions, however more clinical studies are needed to define the potential response of these drugs in patients with psoriasis and psoriatic arthritis.


2018 ◽  
Author(s):  
Paresh Kumar Purohit ◽  
Ruairidh Edwards ◽  
Kostas Tokatlidis ◽  
Neeru Saini

AbstractMitochondrial dynamics is a highly dysregulated process in cancer. Apoptosis and mitochondrial fission are two concurrent events wherein increased mitochondrial fragmentation serves as a hallmark of apoptosis. We have shown earlier that miR-195 exerts pro-apoptotic effects in breast cancer cells. Herein, we have demonstrated miR-195 as a modulator of mitochondrial dynamics and function. Imaging experiments upon miR-195 treatment have shown that mitochondria undergo extensive fission. We validated mitofusin2 as a potential target of miR-195. Which may provide a molecular explanation for the respiratory defects induced by miR-195 over-expression in breast cancer cells? Active, but not total, mitochondrial mass, was reduced with increasing levels of miR-195. We have further shown that miR-195 enhances mitochondrial SOD-2 expression but does not affect PINK1 levels in breast cancer cells. Collectively, we have revealed that miR-195 is a modulator of mitochondrial dynamics by targeting MFN2 thereby impairing mitochondrial function. Concomitantly, it enhances the scavenger of reactive oxygen species (SOD-2) to maintain moderate levels of oxidative stress. Our findings suggest a therapeutic potential of miR-195 in both ER-positive as well as ER-negative breast cancer cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Bruna Kelly Sousa Hirata ◽  
Renata Mancini Banin ◽  
Ana Paula Segantine Dornellas ◽  
Iracema Senna de Andrade ◽  
Juliane Costa Silva Zemdegs ◽  
...  

Due to the high incidence and severity of obesity and its related disorders, it is highly desirable to develop new strategies to treat or even to prevent its development. We have previously described thatGinkgo bilobaextract (GbE) improved insulin resistance and reduced body weight gain of obese rats. In the present study we aimed to evaluate the effect of GbE on both inflammatory cascade and insulin signaling in retroperitoneal fat depot of diet-induced obese rats. Rats were fed with high fat diet for 2 months and thereafter treated for 14 days with 500 mg/kg of GbE. Rats were then euthanized and samples from retroperitoneal fat depot were used for western blotting, RT-PCR, and ELISA experiments. The GbE treatment promoted a significant reduction on both food/energy intake and body weight gain in comparison to the nontreated obese rats. In addition, a significant increase of both Adipo R1 and IL-10 gene expressions and IR and Akt phosphorylation was also observed, while NF-κB p65 phosphorylation and TNF-αlevels were significantly reduced. Our data suggest that GbE might have potential as a therapy to treat obesity-related metabolic diseases, with special interest to treat obese subjects resistant to adhere to a nutritional education program.


2019 ◽  
Vol 317 (1) ◽  
pp. R98-R107 ◽  
Author(s):  
Seul-A Bae ◽  
Ioannis P. Androulakis

Disruption of circadian rhythms has been associated with metabolic syndromes, including obesity and diabetes. A variety of metabolic activities are under circadian modulation, as local and global clock gene knockouts result in glucose imbalance and increased risk of metabolic diseases. Insulin release from the pancreatic β cells exhibits daily variation, and recent studies have found that insulin secretion, not production, is under circadian modulation. As consideration of daily variation in insulin secretion is necessary to accurately describe glucose-stimulated insulin secretion, we describe a mathematical model that incorporates the circadian modulation via insulin granule trafficking. We use this model to understand the effect of oscillatory characteristics on insulin secretion at different times of the day. Furthermore, we integrate the dynamics of clock genes under the influence of competing environmental signals (light/dark cycle and feeding/fasting cycle) and demonstrate how circadian disruption and meal size distribution change the insulin secretion pattern over a 24-h day.


2021 ◽  
Author(s):  
Emelyne Lécuyer ◽  
Tiphaine Le Roy ◽  
Aurélie Gestin ◽  
Amélie Lacombe ◽  
Catherine Philippe ◽  
...  

Excess of chronic contact between microbial motifs and intestinal immune cells are known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes. <p>The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described but how dendritic cells (DCs) participate to these changes is still poorly documented. To address this question, transgenic mice with enhanced DCs lifespan and immunogenicity (DC<sup>hBcl-2</sup> mice) are challenged with a high-fat diet.</p> <p>Those mice display resistance to DIO and metabolic alterations. The DIO-resistant phenotype is associated with healthier parameters of intestinal barrier function and lower intestinal inflammation. DC<sup>hBcl-2</sup> DIO-resistant mice demonstrate a particular increase in tolerogenic DC numbers and function which is associated with strong intestinal IgA, Th17 and T regulatory immune responses.</p> <p>Microbiota composition and function analyses reveal that the DC<sup>hBcl-2</sup> mice microbiota is characterized by lower immunogenicity and an enhanced butyrate production. Cohousing experiments and fecal microbial transplantations are sufficient to transfer the DIO resistance status to WT mice demonstrating that maintenance of DCs tolerogenic ability sustains a microbiota able to drive DIO resistance. DCs tolerogenic function is revealed as a new potent target in metabolic disease management.</p>


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


Sign in / Sign up

Export Citation Format

Share Document