Requirements for DNA bubble structure for efficient cleavage by helix–two-turn–helix DNA glycosylases

Mutagenesis ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Kristina A Makasheva ◽  
Anton V Endutkin ◽  
Dmitry O Zharkov

Abstract Oxidative DNA lesions, constantly generated by both endogenous and environmentally induced reactive oxygen species, are removed via the base excision repair pathway. In bacteria, Fpg and Nei DNA glycosylases, belonging to the helix–two-turn–helix (H2TH) structural superfamily, remove oxidised purines and pyrimidines, respectively. Interestingly, the human H2TH family glycosylases, NEIL1, NEIL2 and NEIL3, have been reported to prefer oxidative lesions in DNA bubbles or single-stranded DNA. It had been hypothesised that NEIL2 might be involved in the repair of lesions in transcription bubbles; however, bubble-like structures may appear in other cellular contexts such as displacement loops (D-loops) associated with transcription, recombination or telomere maintenance. The activities of bacterial Fpg and Nei on bubble substrates were not addressed. Also, it is not known whether H2TH enzymes process bubbles containing the third DNA or RNA strand, and how the bubble length and position of the lesion within a bubble affect the excision. We have investigated the removal of 8-oxoguanine (8-oxoG) and 5,6-dihydrouracil (DHU) by Escherichia coli Fpg and Nei and human NEIL1 and NEIL2 from single-strand oligonucleotides, perfect duplexes, bubbles with different numbers of unpaired bases (6–30), bubbles containing the lesion in different positions and D-loops with the third strand made of DNA or RNA. Fpg, NEIL1 and NEIL2 efficiently excised lesions located within bubbles, with NEIL1 and NEIL2 being specific for DHU, and Fpg removing both 8-oxoG and DHU. Nei, in contrast, was significantly active only on DHU located in double-stranded DNA. Fpg and NEIL1 also tolerated the presence of the third strand of either DNA or RNA in D-loops if the lesion was in the single-stranded part, and Fpg, Nei and NEIL1 excised lesions from the double-stranded DNA part of D-loops. The presence of an additional unpaired 5′-tail of DNA or RNA did not affect the activity. No significant position preference for lesions in a 12-mer bubble was found. Overall, the activities of Fpg, NEIL1 and NEIL2 on these non-canonical substrates are consistent with the possibility that these enzymes may participate in the repair in structures arising during transcription or homologous recombination.

Archaea ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Miki Fujii ◽  
Chieri Hata ◽  
Munetada Ukita ◽  
Chie Fukushima ◽  
Chihiro Matsuura ◽  
...  

The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeonThermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases ofMethanocaldococcus jannaschii(MjaOgg) andSulfolobus solfataricus(SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed inEscherichia coliand purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encodingTVG_RS00315is a member of the Ogg2 family ofT. volcanium.


1986 ◽  
Vol 235 (2) ◽  
pp. 531-536 ◽  
Author(s):  
M Dizdaroglu ◽  
E Holwitt ◽  
M P Hagan ◽  
W F Blakely

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.


1999 ◽  
Vol 181 (21) ◽  
pp. 6763-6771 ◽  
Author(s):  
Lauren M. Posnick ◽  
Leona D. Samson

ABSTRACT Inappropriate expression of 3-methyladenine (3MeA) DNA glycosylases has been shown to have harmful effects on microbial and mammalian cells. To understand the underlying reasons for this phenomenon, we have determined how DNA glycosylase activity and substrate specificity modulate glycosylase effects in Escherichia coli. We compared the effects of two 3MeA DNA glycosylases with very different substrate ranges, namely, the Saccharomyces cerevisiae Mag1 and the E. coli Tag glycosylases. Both glycosylases increased spontaneous mutation, decreased cell viability, and sensitized E. coli to killing by the alkylating agent methyl methanesulfonate. However, Tag had much less harmful effects than Mag1. The difference between the two enzymes’ effects may be accounted for by the fact that Tag almost exclusively excises 3MeA lesions, whereas Mag1 excises a broad range of alkylated and other purines. We infer that the DNA lesions responsible for changes in spontaneous mutation, viability, and alkylation sensitivity are abasic sites and secondary lesions resulting from processing abasic sites via the base excision repair pathway.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1591
Author(s):  
Paulina Prorok ◽  
Inga R. Grin ◽  
Bakhyt T. Matkarimov ◽  
Alexander A. Ishchenko ◽  
Jacques Laval ◽  
...  

It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.


2020 ◽  
Vol 48 (16) ◽  
pp. 9082-9097 ◽  
Author(s):  
Emilie Lebraud ◽  
Guillaume Pinna ◽  
Capucine Siberchicot ◽  
Jordane Depagne ◽  
Didier Busso ◽  
...  

Abstract One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with euchromatin is necessary for the removal of 8-oxoG. Mediator subunits CDK8 and MED12 bind to chromatin and interact with OGG1 in response to oxidative stress, suggesting they participate in the recruitment of the DNA glycosylase. The oxidative stress-induced association between the cohesin and mediator complexes and OGG1 reveals an unsuspected function of those complexes in the maintenance of genomic stability.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 315 ◽  
Author(s):  
Albelazi ◽  
Martin ◽  
Mohammed ◽  
Mutti ◽  
Elder

Endonuclease VIII-like (NEIL) 1 and 3 proteins eliminate oxidative DNA base damage and psoralen DNA interstrand crosslinks through initiation of base excision repair. Current evidence points to a DNA replication associated repair function of NEIL1 and NEIL3, correlating with induced expression of the proteins in S/G2 phases of the cell cycle. However previous attempts to express and purify recombinant human NEIL3 in an active form have been challenging. In this study, both human NEIL1 and NEIL3 have been expressed and purified from E. coli, and the DNA glycosylase activity of these two proteins confirmed using single- and double-stranded DNA oligonucleotide substrates containing the oxidative bases, 5-hydroxyuracil, 8-oxoguanine and thymine glycol. To determine the biochemical role that NEIL1 and NEIL3 play during DNA replication, model replication fork substrates were designed containing the oxidized bases at one of three specific sites relative to the fork. Results indicate that whilst specificity for 5- hydroxyuracil and thymine glycol was observed, NEIL1 acts preferentially on double-stranded DNA, including the damage upstream to the replication fork, whereas NEIL3 preferentially excises oxidized bases from single stranded DNA and within open fork structures. Thus, NEIL1 and NEIL3 act in concert to remove oxidized bases from the replication fork.


2021 ◽  
Vol 22 (3) ◽  
pp. 1137
Author(s):  
Annalisa Ferino ◽  
Luigi E. Xodo

The promoter of the Kirsten ras (KRAS) proto-oncogene contains, upstream of the transcription start site, a quadruplex-forming motif called 32R with regulatory functions. As guanine under oxidative stress can be oxidized to 8-oxoguanine (8OG), we investigated the capacity of glycosylases 8-oxoguanine glycosylase (OGG1) and endonuclease VIII-like 1 (Neil1) to excise 8OG from 32R, either in duplex or G-quadruplex (G4) conformation. We found that OGG1 efficiently excised 8OG from oxidized 32R in duplex but not in G4 conformation. By contrast, glycosylase Neil1 showed more activity on the G4 than the duplex conformation. We also found that the excising activity of Neil1 on folded 32R depended on G4 topology. Our data suggest that Neil1, besides being involved in base excision repair pathway (BER), could play a role on KRAS transcription.


2021 ◽  
Vol 12 ◽  
Author(s):  
Almaz Nigatu Tesfahun ◽  
Marina Alexeeva ◽  
Miglė Tomkuvienė ◽  
Aysha Arshad ◽  
Prashanna Guragain ◽  
...  

DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.


2021 ◽  
Author(s):  
Emmanuelle Bignon ◽  
Natacha Gillet ◽  
Chen-Hui Chan ◽  
Tao Jiang ◽  
Antonio Monari ◽  
...  

ABSTRACTThe combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such tandem base lesions give rise to a strong coupling with the double helix degrees of freedom and induce important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesions featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulation and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally multiple damaged sites of the utmost significance in radiation chemistry.


Sign in / Sign up

Export Citation Format

Share Document